
Y202431

Unity 3D and PlayMaker
Essentials
Game Deve lopmen t f rom Concep t t o Pub l ish ing

Jere Miles

Gaming

In introducing new students to video game development, there are two cru-
cial components to consider: design and implementation. Unity 3D and
PlayMaker Essentials: Game Development from Concept to Publish-
ing provides theoretical background on topics such as characters, stories,
level design, interface design, audio, game mechanics, and tools and skills
needed.

Each chapter focuses on a speci�c topic, with topics building upon each
other so that by the end of the book you will have looked into all the sub-
jects relevant to creating your own game. The book transitions from dis-
cussion to demonstrations of how to implement techniques and concepts
into practice by using Unity3D and PlayMaker. Download boxes are includ-
ed throughout the book where you can get the version of the game project
under discussion or other content to add to the project, as well as any
supplementary video tutorials that have been developed.

Addressing both theoretical and practical aspects, Unity 3D and Play-
Maker Essentials enables you to understand how to create a game by
having you make a game. By gradually completing your own design docu-
ment through the course of the book, you will become familiar with core
design principles while learning the practical skills needed to bring your
unique game to life.

Unity 3D and PlayMaker Essentials
Game Deve lopmen t f rom Concep t t o Pub l i sh ing

Miles

Unity 3D and PlayMaker Essentials

Unity 3D and PlayMaker
Essentials
Game Development from Concept to Publishing

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

Unity 3D and PlayMaker
Essentials
Game Development from Concept to Publishing

Jere Miles

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160414

International Standard Book Number-13: 978-1-138-92177-1 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Miles, Jere, author.
Title: Unity 3D and PlayMaker essentials : game development from concept to
publishing / Jere Miles.
Description: Boca Raton : Taylor & Francis, CRC Press, 2016. | Includes
bibliographical references and index.
Identifiers: LCCN 2016000972 | ISBN 9781138921771 (alk. paper)
Subjects: LCSH: Computer games--Programming. | Video games--Design. | Unity
(Electronic resource) | Three-dimensional display systems.
Classification: LCC QA76.76.C672 M5395 2016 | DDC 794.8/1536--dc23
LC record available at https://lccn.loc.gov/2016000972

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This work is dedicated to my wife, Raylene Miles, for putting up with the long nights
and Sundays while I sat in the o�ce and typed and typed and typed. This is also
dedicated to my children, Sergei and Steven, for the long discussions and early

prototyping of the Sancho Panza idea during the morning drives to school.

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

Contents

Preface. .xv
Acknowledgments ..xxiii

SECTION I Background

Chapter 1: Introduction ..3
1.1 Who Plays Games? .4
1.2 How Are Games Made?. .6

1.2.1 AAA Studios. .6
1.2.2 The Indie Studio. .7

1.3 Who Can Make Games?. .7
1.3.1 Skills and Jobs. .8
1.3.2 Working in the Industry. .8

1.4 What Types of Games Are There? .10
1.4.1 Role-Playing Games .10
1.4.2 Adventure Games .11
1.4.3 Platformer Games .12
1.4.4 Shooter Games. .13
1.4.5 Action Games .14
1.4.6 Strategy Games. .15
1.4.7 Simulation Games .16
1.4.8 Sports Games .17
1.4.9 Puzzle Games .18
1.4.10 MMO Games .18

1.5 Summary .19
Vocabulary. .20
Review Quiz. .20
Exercises. .20
Design Document. .21

Chapter 2: Design Document .23
2.1 Introduction to the Design Document24

2.1.1 Do We Need a Design Document?.25
2.1.2 Methods of Design .26
2.1.3 Logical Design versus Descriptive Design27
2.1.4 Mission and Vision. .28

2.2 Sections of the Design Document .29
2.2.1 Game Concept .30
2.2.2 Game Characters .33
2.2.3 Game Story. .34

vii

2.2.4 The Game World. .35
2.2.5 Game Audio. .36
2.2.6 Game Interface. .37

2.3 Summary .37
Vocabulary. .38
Review Quiz. .38
Exercises. .39
Design Document. .39

Chapter 3: Using Unity and PlayMaker. .41
3.1 Installing Unity. .42
3.2 Unity’s Interface. .44
3.3 Using Unity .52
3.4 Installing PlayMaker . 60
3.5 PlayMaker’s Interface. .63
3.6 State Machines. .65
3.7 Using PlayMaker. .70
3.8 Summary .85
Vocabulary. .85
Review Quiz. .85
Exercises. .86
Design Document. .86

SECTION II Building Blocks

Chapter 4: Characters .89
4.1 The Purpose of Characters. .90
4.2 Do Games Need Characters?. .90
4.3 Traditional Character Types. .91

4.3.1 The Hero .93
4.3.2 The Shadow. .93
4.3.3 The Mentor. .94
4.3.4 The Ally .95
4.3.5 The Herald .95
4.3.6 The Trickster. .95
4.3.7 The Shapeshifter .96
4.3.8 The Threshold Guardian .96

4.4 Game Character Types. .97
4.4.1 Merchants. .97
4.4.2 The Quest Giver .98
4.4.3 Information .98

4.5 Character Design. .99
4.6 Character Asset Design. .102

viii

4.7 Importing Assets in Unity. .105
4.7.1 Back to Projects .105
4.7.2 Importing 3D Assets. .107
4.7.3 Settings for Imported 3D Assets.111
4.7.4 From 3D Assets to Player Controllable Assets. . . 120

4.8 Character Control Systems with PlayMaker.122
4.8.1 Designing the Character Response System123
4.8.2 Getting Input through Unity126
4.8.3 Building State Machines in PlayMaker126

4.8.3.1 Moving Sancho .127
4.8.3.2 Rotating Sancho. .138
4.8.3.3 Jumping Sancho .140
4.8.3.4 The Camera Follows Sancho.145

4.9 Summary .147
Vocabulary. .147
Review Quiz. .148
Exercises. .149
Design Document. .149

Chapter 5: Non-Player Characters . 151
5.1 What Is Arti�cial Intelligence?. .152
5.2 Some Di�erent Types of Arti�cial Intelligence152

5.2.1 Scripted Behavior. .152
5.2.2 Random Behavior .154
5.2.3 Expert Systems .156
5.2.4 Mathematical Behavior Modeling157
5.2.5 Evolutionary Systems. .159

5.3 Selecting an Arti�cial Intelligence System.161
5.4 Designing a Threshold Guardian. .162
5.5 Implementing the Threshold Guardian.167

5.5.1 The Controller .168
5.5.2 Patrolling .171
5.5.3 Spotting the Player .180
5.5.4 Attacking the Player .184
5.5.5 Hurting the Player .190
5.5.6 Connecting the Attack and Health States.194
5.5.7 Final Tweaks. .196

5.6 Prefabs. .199
5.7 Summary .200
Vocabulary. .200
Review Quiz. .201
Exercises. .201
Design Document. .202

Chapter 6: Story .203
6.1 What Is a Story? .204
6.2 Does My Game Need a Story?. .204

ix

6.3 How to Tell a Story .205
6.4 The Building Blocks of a Story. .206

6.4.1 Characters. .206
6.4.2 Setting . 206
6.4.3 The Problem. .207
6.4.4 The Plot .209
6.4.5 The Solution. .209
6.4.6 The Theme .210

6.5 Aristotle and the Greeks. .211
6.5.1 Plot .212
6.5.2 Characters. .214
6.5.3 Thought. .215
6.5.4 Diction .215
6.5.5 Melody. .216
6.5.6 The Spectacle .216

6.6 The Return of Joseph Campbell. .217
6.6.1 The Ordinary World. .219
6.6.2 Call to Adventure. .219
6.6.3 Refusal of the Call. .219
6.6.4 Meeting the Mentor .220
6.6.5 Crossing the Threshold .220
6.6.6 Tests, Allies, and Enemies .220
6.6.7 Approaching the Cave. .221
6.6.8 The Ordeal .221
6.6.9 The Reward .221
6.6.10 The Road Back. .222
6.6.11 Resurrection. .222
6.6.12 Return with Elixir .222

6.7 Story Design .222
6.7.1 The Theme .223
6.7.2 Characters. .224
6.7.3 Setting and Backstory .225
6.7.4 The Problem. .226
6.7.5 The Plot .227
6.7.6 The Solution. .228
6.7.7 Dialogue .228

6.8 Putting the Story into the Game .231
6.8.1 Voice-Over Narration .232
6.8.2 Written Text . 235
6.8.3 Character Dialogue. .238
6.8.4 Journal Systems .255

6.9 Summary .256
Vocabulary. .256
Review Quiz. .257
Exercises. .257
Design Document. .257

x

Chapter 7: Environment .259
7.1 Environments for Stories .260
7.2 Environments for Games .261

7.2.1 Controlling the Player. .261
7.2.2 Informing the Player. .263
7.2.3 Challenging the Player. .264
7.2.4 The Final Design. .265

7.3 Creating the Terrain in Unity. .269
7.3.1 Settings .271
7.3.2 Terrain Collider .273
7.3.3 Height Tools. .274

7.4 Dressing a Terrain with Standard Content279
7.4.1 Painting Textures. .279
7.4.2 Adding Water. .288
7.4.3 Adding Trees .289
7.4.4 Adding Grass. .296

7.5 Adding Imported Assets. .301
7.6 Lighting the Environment .307
7.7 Boundaries. .307
7.8 Summary .310
Vocabulary. .311
Review Quiz. .311
Exercises. .312
Design Document. .312

Chapter 8: Mechanics. .313
8.1 What Are Game Mechanics? .314

8.1.1 The Core Mechanics .314
8.1.2 Victory and Loss Conditions. .315
8.1.3 Balance Mechanics .316
8.1.4 Story Mechanics. .316
8.1.5 System Mechanics. .317

8.2 Where Do Mechanics Come From?. .317
8.3 Designing Our Mechanics .318

8.3.1 The Checkpoint System. .319
8.3.2 Respawning Sancho .320
8.3.3 Sancho and Water .321
8.3.4 Sancho’s Collection System .323

8.4 Implementing Our Mechanics .325
8.4.1 The Checkpoint System. .325
8.4.2 Sancho and Water .330
8.4.3 Respawning Sancho .333
8.4.4 Sancho’s Collection System .338

8.5 Summary .343

xi

Vocabulary .344
Review Quiz .344
Exercises. .345
Design Document .345

SECTION III Bringing It Together

Chapter 9: Audio .349
9.1 How Audio Is Used in Games .350

9.1.1 Music. .350
9.1.2 Ambience .352
9.1.3 Sound Events. .354

9.2 Finding Audio. .354
9.3 Introduction to Audacity .356

9.3.1 Cutting Up an Audio File .357
9.3.2 Applying E�ects to Audio. .360
9.3.3 Adjusting Volume Levels. .364

9.4 Audio in Unity. .364
9.4.1 2D Audio .366
9.4.2 3D Audio .369
9.4.3 Playing Ambient Audio .371
9.4.4 Playing Background Music .375

9.5 Using PlayMaker to Play Audio. .375
9.5.1 Background Music .376
9.5.2 Ambient Sounds. .379
9.5.3 E�ects for Events .382

9.6 Summary .386
Vocabulary .387
Review Quiz .387
Exercises. .388
Design Document .388

Chapter 10: The User Interface .391
10.1 The Types of User Interfaces .392

10.1.1 Menu-Based Systems .392
10.1.2 Heads-Up Display Systems and Overlays.392

10.2 User Interface Design. .393
10.2.1 HUD Design .394
10.2.2 Menu Design .397
10.2.3 Basics of Color Theory .398

10.3 The User Interface System of Unity.402
10.3.1 Building Blocks of uGUI .402
10.3.2 Constructing the Main Menu.404
10.3.3 Constructing the HUD Overlay412
10.3.4 Polishing the Dialogue Work418

xii

10.4 Updating the User Interface with PlayMaker.420
10.4.1 Responses on the Main Menu421
10.4.2 Updating the Overlay .430
10.4.3 Integrating the Dialogue System440

10.5 Summary .444
Vocabulary .445
Review Quiz .445
Exercises. .446
Design Document .447

Chapter 11: Testing, Tweaking, and Publishing .449
11.1 What Is Testing?. .450

11.1.1 Hunting Bugs. .452
11.1.2 Play-Through Testing .453
11.1.3 Unit Testing. .454
11.1.4 Break Testing .457

11.2 Fixing and Tweaking .457
11.2.1 Fixing the Following Sheep458

11.3 Building the Game .460
11.3.1 Game Development Life Cycle462
11.3.2 Build Options in Unity. .463
11.3.3 Creating a Stand-Alone Build.465

11.4 Summary .470
Vocabulary .471
Review Quiz .472
Exercises. .472
Design Document .472

Index .473

xiii

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

Preface

As we begin the process of looking into how to use Unity and PlayMaker to
create video games, we need to ensure that we are all on the same page,
pardon the pun. It is important that you know what this book is about and
what this book isn’t about. It is also important to be aware of the expected
skills and skill levels as we begin this book together.

What This Book Is About
The focus of this book is to introduce you to game development. Through
this book you will get an overview of how to create video games. The process
of creating a video game includes developing scripts and programmed
behavior for the objects that are within the game to be played. As far as
the development of programmed behaviors, we will be able to ease the
transition into this process through the use of the PlayMaker visual scripting
plugin, which will allow us to bypass all the syntax and technical aspects
of programming and instead focus solely on the logical construction of a
program or behavior script. When it comes to developing a game, it is created
through the programming of the game, and the other parts (the graphics,
for instance) de�ne what the game looks like, not how it is played or how it
behaves. As an example we could create a platform game with nothing but
colored blocks running around the game world jumping over empty areas.
The game would have all of the behaviors and playability of a platformer;
however, it would not look nearly as cool as the platformer games that are
currently on the market. The wonderfully cool graphics and animations of
video games are not what we will be creating in this book.

Who This Book Is For
The concept for this book originated as a textbook for an introduction to a
game development course (SGD 111) taught at Wilkes Community College in
North Carolina. As a result, the target audience for this book is anyone who
is interested in learning about game development and how to create games.
It is assumed that the reader does not actually already know how to create
video games. For instance, if you have extensive experience using another
game engine such as Game Maker, you may be ready for a slightly more
advanced book than this one. However, if you have not worked with any
other game engine or if you have tried working with a couple but just could
not seem to get the hang of it, then this book should be a good starting
point�to get you up and going with the Unity game engine.

Likewise, if you have extensive experience writing code in Java or C++ or
some other language, you may be better suited to �nd a book that works

xv

with the C# scripting language within Unity. This being said, PlayMaker
can be a very powerful tool for quickly prototyping an idea to see how
things work, in which case it can be useful to add PlayMaker to your skill
set. However, if you do have extensive programming experience, then you
may �nd the pace of this book a little slow as the target audience is for
those who have no experience with programming or those who have tried
programming but are a little fuzzy on it.

If you are an artist that would like to learn how to put your artwork into
Unity and get it to work with some game ideas of your own, then this book
should be very helpful in getting you started with the game engine and
also accomplishing the behaviors that you want associated with the art
content so�that you can demonstrate your own game concepts and even
fully�develop them into �nal products.

How This Book Is Organized
Each chapter of this book is laid out to focus on a speci�c topic with the
topics building on each other so that by the end of the book we will have
looked into all of the topics relevant to creating a game of our own. The
chapters each begin with a theory section, discussing the background and
various approaches to the given topic. Following the theory section, the
chapter will work on designing components for the game project based
upon the theories that were just presented. Finally, the chapter text will
conclude with an implementation section in which the created designs
will be built within Unity and PlayMaker to bring the theory of the topic to
life within our game project. Each chapter also ends with a set of review
questions that you can use to test your understanding of the concepts, and a
set of exercises that are intended to expand upon the examples presented in
the text of the chapter.

The idea of a design document will also be discussed during the course of
the book with each chapter adding to the design document for a game idea
of your own creation. By the end of the book, you should be able to take
your design document and create the game that you have designed. Within
each chapter, there are download boxes where you can get the version of the
game project that is within the book or other content to add to the project
as well as any video tutorials that have been developed to supplement the
chapter contents.

Book Content
Section I: Background

• Chapter 1—Introduction
• Theory: Students will be introduced to the overall process of game

development including a discussion of the tools used, the skills
needed, the various jobs within the industry, and the vocabulary of

xvi

game development. A brief overview of the various genres and their
characteristics is also provided.

• Chapter 2—Design Document
• Theory: The design document is introduced, placing emphasis on

the rationale behind each section and the role that each section
plays in the overall development process of a video game project.
While much of this content is covered in the chapters that follow, it is
important for the reader to recognize the role of design, as it forms
the foundation for the vision of a game project.

• Design: We will introduce the overall vision of the Sancho Panza
project, which we will be working on during the course of the book
while encouraging the reader to begin the design work on a game
idea of their own by focusing on the primary game concept with
respect to the targets and vision of the game.

• Implementation: Based on the information from the chapter, we will
begin the creation of our design document that will cover the Sancho
Panza project and continue to add to it with each chapter.

• Chapter 3—Using Unity and PlayMaker
• Theory: We will introduce the tools that the book will focus on,

detailing how to download and install the software and providing
overviews of the user interfaces for both applications. A discussion
of the resources that are available on both websites is also
included.

• Design: The discussion focuses on what a �nite state machine (FSM) is
and how to construct one based upon the plain English description
of what is intended to occur. Creating state machines to accomplish
examples are presented in the practical�section.

• Implementation: We will demonstrate how to place objects within
Unity and move them around and manipulate other primary
components. Import assets and packages are discussed. Readers will
learn how to develop state machines to alter the properties of various
game objects placed within a scene. Through these state machines we
will dynamically make the changes that were originally done as static
changes in the previous demonstration of moving and manipulating
objects within Unity.

Section II: Building Blocks

• Chapter 4—Characters
• Theory: We provide a background discussion of characters focusing

on the Jungian character types and their roles within a story and how
they interact with one another. The chapter also discusses the other
components of a character such as background, physical appearance,
emotional construction, psychological construction, environment,
and so on.

• Design: We will create algorithms (plain English) to de�ne the
controller behaviors that our character should have based upon

xvii

decisions we made as the character idea was developed through the
theory discussion. From the algorithms, we will demonstrate how to
sketch state machines for these functionalities.

• Implementation: We will introduce the lead character of our book’s
example project, Sancho Panza, and demonstrate how to bring him
into Unity, and through the use of PlayMaker turn him into a character
that the player can control and play. The PlayMaker FSMs developed
will be the implementation of those constructed during the design
phase.

• Chapter 5—Non-Player Characters
• Theory: Based upon the characters that were developed in the last

chapter, we will look at how we can bring those characters to life
within our game project and begin to populate the world around
Sancho Panza. We will explore arti�cial intelligence (AI) by developing
our own de�nition of it and looking at the major types of AI that can
be developed and eventually deployed.

• Design: Based upon our work with the player character and the needs
of the project, we will design the behavior system that will govern the
decision-making process of a threshold guardian character during
the game so that they will be able to respond to events and actions
that occur as the player plays our game.

• Implementation: We will use PlayMaker to get our design working
with a spider added to the Sancho Panza project that will attack
and eventually kill the player character. This spider will have a
rudimentary AI system that will give it the abilities we need for this
project. These same basic principles will be applicable to any other
non-player character (NPC) within the game.

• Chapter 6—Story
• Theory: We will provide background information on the story, such

as the theme, plot and devices, backstory, premise, and so on. This
chapter includes a discussion of Aristotle’s ideas about stories. We will
also discuss the Hollywood 3-act structure and how it helps to guide
a story along. Joseph Campbell’s “Journey of a Hero” will also be
demonstrated as a potential blueprint for story creation.

• Design: This chapter covers the development of the backstory and
other story components for a game project. While much of this
design work may not make a direct appearance within the game,
we need to know the story of the game in order to know what will
happen during game play. We will also create potential quest systems
based upon the story and dialogue trees between the NPC and the
player character.

• Implementation: We will construct the basis for a quest system for
Sancho as well as an elementary dialogue between Sancho and his
wife Teresa. In addition, we will add a narrative introduction to the
game based upon the game’s backstory, explaining who the player is
and why they are on the island that they are on.

xviii

• Chapter 7—Environment
• Theory: We provide an overview of the level design including the

theme, atmosphere, and purpose. We focus on the level design as an
episodic structure, speci�cally as a chapter of the overall story that
is being told within the game. By recognizing the level as a chapter
in the story, it becomes more apparent what purpose the level must
serve and therefore what we as developers must do to keep our
players on track within the story.

• Design: Based upon the game design document and an
understanding of the purpose of a level, we will sketch out a �rst-
level environment for Sancho Panza to be dropped into. This level will
consist of the island that the story is going to take place on.

• Implementation: We demonstrate how to construct a level out of
standard assets within Unity as well as importing external assets. The
standard assets will be utilized to construct an exterior terrain for the
game world while the provided assets will build the town and other
props, all based upon our design work for this island.

• Chapter 8—Mechanics
• Theory: Mechanics are the underlying rules that govern the behaviors

of games; we discuss the guiding principles of these mechanics
within video games by placing them within di�erent categories
to see how they impact the games that we play and ultimately the
games that we design.

• Design: Based upon the components and uses of game mechanics,
we will determine and plan various obstacles for Sancho to deal with
in the level that was constructed during the previous chapter. We will
demonstrate several di�erent game mechanics within this design.

• Implementation: With a working Sancho Panza from previous
chapters, we will add things for Sancho to interact with (collecting
various objects, for instance) and tweak his controller system to
provide for the game mechanic functionality as depicted in the
design phase just completed based upon the original design
document.

Section III: Bringing It Together

• Chapter 9—Audio
• Theory: What role does audio play within a game? We introduce the

di�erent types of audio that can be utilized and their speci�c purpose
within the overall game-play experience: music, ambience, e�ects,
and voice-overs.

• Design: We create an audio list that can be used within the project
that has been developed thus far. Along with this list, we will
sketch out locations of audio sources and potential areas of impact;
the purpose of this design component is to check for dead and
overpopulated areas within our overall audio scheme and plan “what
and where” before trying to add it.

xix

• Implementation: We will add various audio to our Sancho Panza
example game and learn how Unity 3D handles and works with
audio. Along with the audio being added, we will demonstrate how
to use PlayMaker to script when audio will play and when it will not,
so that user feedback (theoretical component) can be understood.
A section incorporating the use of Audacity (a free audio editing
application) for tweaking the audio �les used in the game is also
included.

• Chapter 10—The User Interface
• Theory: Without a user interface, the player is very limited in what

they know of the game world. We discuss the various uses of the
system interfaces, ranging from menus to heads-up displays and
how to consider the impact of these components, both�positive and
negative, to the overall game-play experience of the player.

• Design: We will create sample sketches of how the user interface
could look within our game. The purpose of designing the interface
through sketching is to consider what information should be
provided to the player and how to lay it out in a functional manner.
In addition, we will create menu systems, which means that we will
need to consider what options should be provided to the player of
the game.

• Implementation: We will add graphical user interface (GUI)
components to our Sancho Panza game project including a menu
system and heads-up display to provide information during game
play. PlayMaker will be used to update the GUI information and also
to respond to user interaction on the menu system.

• Chapter 11—Testing, Tweaking, and Publishing
• Theory: We will explore the various types of testing and how

to approach the testing of a game project with a speci�c focus
on our Sancho Panza game project. In addition, we will look
at the di�erent stages of a life cycle of a video game project,
concentrating on the types of content that should be emerging
from each of the stages.

• Design: We will need to take into account the target platform from
our initial design and determine how to best build a deliverable
of our game for that system. It is also important to consider the
potential similarities between other builds. Finally, we will design
solutions to the bugs that we find through our methodical testing
of the Sancho Panza project.

• Implementation: We will demonstrate how to deploy our Sancho
Panza game as a stand-alone Windows deliverable, focusing on
the various settings that we can customize. In addition, we will
discover bugs within the project and properly document their
cause in order to repair them from the developer’s perspective.

xx

Companion Website
Over the course of this book, we will be utilizing many resources that are
not included with the default installation on Unity 3D. These resources
include models, sounds, and textures. All of these can be obtained from
the companion website that has been created to accompany this book.
The�website also includes links to video tutorials to enhance the content of
the book and a complete version of the project developed over the course
of the many examples. This project �le includes the full and �nal project, but
scene �les have been created to correspond with each chapter and section
as needed. The companion website also includes content for instructors
such as PowerPoints for each chapter and a set of sample test questions
for each chapter. Finally, the design documents developed through this
book are also available on the website: http://www.darkglass-studio.com/
Unity_PlayMaker_Essentials.

xxi

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

Acknowledgments

Wilkes Community College Simulation and Game Development students
for�serving as a test bed for the development of the content and the �ow of
the material.

Sean Connelly at Focal Press for editing my rambling writing and putting
up�with my incessant e-mails.

Unity Creative magazine, unfortunately no longer in print, for the availability
of the animated knight character for free use (Issue #3, September–October
2010).

Alex Chouls at Hutong Games for getting us into the Beta for version 1.8 of
PlayMaker.

Steve Finney at Arteria3D for the wonderful medieval town and the
characters that are used over the course of the example project.

Timothy Bivans at Enlitanment Studios, LLC, for some early feedback and
general advice on this project and then stepping up to do a full review of
the�content of the book.

xxiii

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

SECTION I
Background

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 1

Introduction

Welcome to the essentials of game development with Unity and PlayMaker.
In this chapter, we will lay the basic groundwork for the game development
process by focusing on the tools and skills used as well as looking into who
plays games and what types of games there are to play. These topics may,
at �rst glance, seem to be obvious to all of us. However, there is a speci�c
vocabulary that is used within the game industry, and it is important that
we make sure we are all on the same page with these terms and with these
concepts. Game development is a wonderfully entertaining industry to get
into; however, it is not necessarily for everyone, and it is through this chapter
that we intend to help clarify some aspects of the industry and dispel some
potential myths, beginning with the idea that playing games and making
games are not the same thing.

• Who Plays Games?
• How Are Games Made?
• Who Can Make Games?
• What Types of Games Are There?

3

1.1 Who Plays Games?
Historically, this would have been considered to be teenage boys in their
bedrooms on Saturday nights. Interestingly enough, this classic misconception
of who plays video games is just as common today as it was back in the 1980s.
Many average people consider video games to be the activity and hobby of
the socially awkward teenage male. It is not our goal here to argue the merits
one way or the other with this view of gamers; we are just stating how gamers
are generally viewed by non-gamers. But what exactly is a non-gamer? Given
today’s society of smartphones, mobile technology, Facebook, gami�cation,
and the emergence of virtual reality and augmented reality, it is very di�cult
to �nd someone that is an active member of our society that genuinely does
not play video games. Games today can be used for training, education,
scienti�c visualization, advertising, and, of course, entertainment. Table 1.1
outlines the actual statistics of who is playing video games today as compiled
by the Entertainment Software Association in 2014. As can be seen from this
information, the average video gamer is most de�nitely not the stereotype.
Keep in mind that these statistics are only for American gamers.

The idea of judging gamers and placing them within cute little boxes is not
only one that non-gamers engage in, but even gamers themselves want
to label each other and speci�cally label themselves to di�erentiate from
other gamers. This has led to the distinction of gamers as casual or hard�core.
Originally, hard-core gamers were ones that invested a lot of time in the
games that they play and became experts at those games, knowing all of
the tricks and intricacies of their games. A casual gamer, on the other hand,
was one that played from time to time and did not take gaming seriously.
A casual gamer would play a game until it became too di�cult and would
then quit, not wanting to invest the time required to become skilled enough
at the game to advance past those stages. However, with the birth of the
social gaming scene, the idea that a hard-core gamer is one that invests a
tremendous amount of time in the games they play, meant that the millions
of people investing hours into a game like Farmville were hard-core gamers,

4

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 1.1 Video Game Players in 2014

59% of Americans play video
games

Average of two gamers in each
game-playing household

51% of American households own
a dedicated game console

Average household has at least one
game-playing device:

68% play on a console
53% play on a smartphone
41% play on a wireless device

Average age of gamer is 31 29% of gamers are under 18
32% of gamers are 18–35
39% of gamers are over 36
52% of gamers are male, 48% female

Source: ESA, 2014 Sales, Demographics, and Usage Data, Entertainment Software Association, http://www.theesa.com/
wp-content/uploads/2014/10/ESA_EF_2014.pdf, 2014.

not casual gamers. As a result, the label hard-core gamer has shifted in recent
years to be those gamers that play games on consoles, or speci�cally those
gamers that do not play social games. But, once again, which of us does
not play a game on our smartphone from time to time? These traditional
labels are becoming more di�cult to easily apply to a broad range of game
players. Thankfully, this need to label gamers as either hard core or casual is
beginning to fade as the amount of gamers and the types of games that we
play continues to grow and to cross traditional boundaries. More important
than whether we are casual or hard core, are the motivations behind why we
play, or to put it another way, what we do when we play games.

A researcher named Richard Bartle looked into the ways that people played
MUDs (multi-user dungeons) and discovered that there are essentially four
distinct player classi�cations or motivations as shown in Figure 1.1. As we
move to the left on this graph, players are more interested in the other
players that are in the game, while moving to the right leads to players
that are more interested in the environment. In today’s vernacular, we are
looking at the distinction between the PvP (Player versus Player) players
and the PvE (Player versus Environment) players. However, as we can see
with Bartle’s characteristics, those who are interested in other players in
the game world may not necessarily want to kill them, the player Killers
in the�top-left quadrant, they may just want to hang out with them and
chat,�the Socializers of the bottom-left quadrant. Swinging back the
other way, we have players who want to conquer the environment—the
Achievers in the top-right quadrant who want all the achievements and
unlocks, with the those who just want to explore the vast game world, their
only reward is knowing that they have seen what is just over the horizon—
the Explorers in the bottom-right quadrant.

At �rst glance, this may seem like a bunch of academic babble about why people
play games. However, knowing why people play games will help us create games
that they will enjoy playing, it is not enough to copy the features and mechanics
of other successful games, we need to understand what it is about those games

5

Introduction

Acting

World

AchieversKillers

Players

Interacting

ExplorersSocializers

FIG 1.1 The Bartle player types.

that the players enjoyed. In order to create rich and diverse video games, it will be
necessary for us to expand our gamer experience and try di�erent things; in fact,
we may even need to try to �gure out why these other gamer types exist and
what exactly they are getting out of playing the games that they do. As gamers,
we have our favorite games and genres, as gamers we play games for fun. But,
as developers we play games for work, we play games for research, and to be fair
on occasion we play our favorite games for fun. As developers, we need to move
out of our typical gaming experience and start looking at some di�erent types
of�games, what can we learn from them as developers and what can we learn
about the players of those games as developers.

Note
You are encouraged to look at the work of Jason VandenBerghe—he
started with the work of Bartle and expanded upon it to include more
extensive psychological modeling based upon the OCEAN personality
traits and merged those with player motivations to be able to map
personalities to games.

1.2 How Are Games Made?
There are essentially two approaches to the development of video games,
from an industry perspective. These include the AAA studio and indie studio
viewpoints. The way that these two approach the development of video
games has some similarities, but also some distinct di�erences that can be
attributed to scope of the game project and target audience. The scope of the
project refers to the size of the project as well as the amount of features to be
included. A game such as World of Warcraft has a much larger scope than does
a game such as Farmville. Notice that the scope of the game had nothing to
do with the success of a game; this is a vital concept for us early on as it is easy
for us to think that we need to build enormous game worlds in order to be
successful at game development. Success in game development is ultimately
measured di�erently by di�erent people based upon your goals. If your goal
is to create a WoW killer, then unless your project passes World of Warcraft, the
project will be a failure. However, if your goal is to build a game that you and
your friends can play together then you will be a success if you can get the
project �nished and into your friend’s hands. This may make it seem as though
the second example would be easier to be successful at, but as we break these
two approaches down, we will see that they are both equally challenging.

1.2.1 AAA Studios

AAA studios are what many of us think of when we consider the game
development industry; these are the big names that create the big titles.
Companies, such as Electronic Arts, BioWare, Bethesda, and Insomniac, are
all examples of AAA studios. With this approach to game development, large
teams are created for each project with the responsibilities divided among

6

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

the various team members. This type of approach creates an environment of
very deep specializations, with each team member only responsible for their
small portion of the project.

AAA studios may easily spend 2 to 4�years with over 200 developers working
to bring a project to the market. Along with the time and personnel, there may
also be an enormous monetary investment into the project. This investment
means that the game must be successful enough as a commercial project in
order for the parent company to recoup the initial money invested, it is just
basic business. If it is necessary to maximize the likelihood of getting a certain
amount of money back once the game has been released, then it is less likely
that you would be willing to experiment and try new things that may not work.
Rather, you would be more interested in looking at what has been successful
and trying to leverage that within your own project; once again this is just basic
business. This is not to say that big studios do not develop amazing games,
as they most de�nitely do, we are simply pointing out that the bigger the
studio�the more business decisions there are that must be made. We are also
not trying to imply that AAA studios do not innovate, as many of them do, we
are only pointing out that there are times when decisions must be made with a
business perspective as opposed to a game design or game-play perspective.

1.2.2 The Indie Studio

The indie studio is a relatively newcomer to the game development process, at
least as a viable business venture for individuals. With the release of powerful
game engines such as Unity and Unreal, the average person can develop video
games using the same tools and technologies as the big studios. Also, with
the rise of digital delivery mechanisms, it is easier for a small studio to get their
games to market and �nd buyers, especially with the rise of the mobile systems
as a gaming platform. Indie studios are usually small operations with less than
50 people working on projects, though many independent studios have fewer
than 10 people toiling away on a given video game. With this smaller approach
to game development, there are many things that the indie studio simply
cannot do as the skills available to the studio are limited to those possessed by
the few employees or those that may be purchased through contract workers.
It is very common for an indie studio to divide the labor up very di�erently
from the AAA studio approach; one or two programmers will be responsible
for all of the coding, and one or two art people will be responsible for all of the
three-dimensional work including animations and one person may be handling
all of the two-dimensional work. Indie studios can develop some amazing
games; however, due to the number of people working on the projects, there
are business decisions that these smaller studios will have to make as well,
namely the size and scope of the projects that they work on.

1.3 Who Can Make Games?
As technology has changed over the years, the creation of games is no longer
limited to only those that can program a computer. With the introduction of
tools such as PlayMaker, we can start making games without having to focus

7

Introduction

on the intricacies of programming languages. This is freeing up the possibility
for many people to begin to make video games. We have worked with kids
as young as �fth graders and on into the collegiate years and beyond. The
only trick to making video games is that it will require a commitment of time
on your part, a willingness to work through some very challenging and at
times frustrating topics and skills until you have mastered them to a level that
you can use them to make what you would like to make. The bottom line is
that if you are interested and if you are willing to practice then you can make
games. If, however, you are not willing to put the game controller down to
practice your game development skills then being a game developer is not
a good �t for you. It is best to be completely honest with yourself and to
recognize that if you want to be a game developer, you will have to work at
it and practice it; parts of it will be very challenging to master. You will not
become a great game developer in a weekend, or a week, or a month, or even
after reading this book. To become a great game developer will take time,
dedication, patience, and practice. You will learn something new with every
project that you work on which is part of what makes this �eld so exciting
and fun to work in.

1.3.1 Skills and Jobs

There are a wide range of skills needed to create video games, though it is
not necessary for one person to possess all of these skills in order to work
within the game industry. For our task, we will focus on the types of skills
needed in order to create games and the software tools that can be used to
practice those skills. It is not our goal to advertise or sell a speci�c application
over any of the others; however, there are some that are industry standard,
and as such if your goal is to work within the game industry as a content
creator or game developer, you would be well served to go ahead and learn
those tools rather than the alternatives, though we have included alternative
applications with our list of recommended software. We are not going to
list every single skill that could exist; rather it is our goal to focus on a high
view of the skills. Table 1.2 lists the skills as well as the potential software
tools and job titles that could be associated with these skills. As can be seen
from this list, to create a game requires a lot of di�erent skills, meaning that
we as individuals may be able to �nd our niche within the industry without
necessarily knowing all of the skills, then again it would be fun to be able to
do it all, especially if you are an indie developer. However, for AAA studios,
focusing on a couple of these skills that you most enjoy would be the way to
go as far as preparing yourself for potential employment at a major studio.

1.3.2 Working in the Industry

The �rst step is to decide if you want a job in the industry or if you want to be
a game developer. In order to get a job as a game developer, you will need to
develop the skills to do the work. There are no magic degrees to guarantee
that a studio will hire you. In order to develop the skills, however, you may
want to experiment with the di�erent aspects of game development to �nd

8

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

an area that really excites you and that you enjoy—this is where college
programs in game development can be enormously bene�cial in providing
guidance and training into the various aspects of the industry. In order to
get the skills needed, you will need to work very hard at making games.
It�is�the goal of this book to introduce you to the process of creating a game,
but not the processes of creating the assets that go into the game, that is,
an entirely di�erent topic for another book. The game industry essentially
has three major categories: business, content creation, and game creation.
The business component is all of the �nancial, marketing, and legal kinds
of things that go into having a business in today’s global economy; this is a
very�important aspect, and this would be a job within the game industry.

Generally speaking, though, when we say that we want to work in the game
industry, we mean that we want to make games. This brings us to the other
two categories: content creation and game creation. Content creation
involves all of the skills needed to create the many things that we see and
hear when playing a game. Music, sounds, characters, buildings, lights, and
so on—all of the content that is in a game must be created by someone as

9

Introduction

TABLE 1.2 Skills and Some of the Associated Job Titles

Skill Description Software Jobs

Three-dimensional
modeling

Creation of all
three-dimensional mesh
content: characters, props,
environments, etc.

3ds Max
Maya
zBrush
Blender

Character modeling
Prop modeler
Environment modeler
Hard-surface modeler

Three-dimensional
animation

Building animation sequences
to provide motion for
three-dimensional meshes.

3ds Max
Maya
Blender

Character animator
Character rigger
Three-dimensional
animator

Texture artist Creation of two-dimensional
graphical content to be used�as
textures on three-dimensional
meshes or as skins of user
interfaces.

Photoshop
Illustrator
GiMP

Texture artist
UI artist

Concept artist Develop sketches of worlds and
characters in order to assist the
modelers with their job.

Photoshop Concept artist

Programming Develop the scripts to get the
game and content to behave
and respond the way that it
should.

C++
C#

AI programmer
System programmer
UI programmer

Level design Combine the graphical assets
within a game engine in order
to create playable levels for the
game.

Unity
Unreal
CryEngine

Level designer
Environment designer

Audio editing Create and edit audio for use in
video games including both
music and sound e�ects.

Audition
Vegas
Audacity

Sound engineer
Music composer

mentioned previously; we will not be focusing on these skills. The game
creation process generally involves the programming and compiling of the
assets that have been created; it is this process that we intend to introduce
through the course of this book to help you to decide if making games is for
you or not.

There is a �nal way of looking at working within the game industry and that
is making games as a hobby. There is nothing wrong with making some
games on the side for you and your friends to knock around with. The goal
is simply to make a few games that you have fun playing with your friends or
other people. In many ways, being a hobby game developer is far easier as
there is no restriction on what you can or cannot do, you are limited only by
your imagination and the amount of time that you are willing to put into the
various ideas that you have.

1.4 What Types of Games Are There?
Types of games are de�ned and categorized as genres. A game genre
provides an outline of a speci�c game as far as how the game might look as
well as the essential game-playing elements. Game genres are important
to us as developers as they assist us in de�ning game types but also help us
to communicate basic game features to help streamline some components
of the design process. For instance, if we were to say that we have a cool
idea for a platform game, the people that we are talking to will immediately
picture the basic elements of platform games, thereby saving us from
having to describe all of those details. There is a �ipside to this, however, in
that our gamers will have certain expectations from our game as well, and
it is di�cult for us to break out of those expectations. As another example,
players of a �rst-person shooter game expect to have some information
on the screen informing them how many bullets they have left and how
healthy they currently are. This may seem �ne, but what if we want to create
a hyperrealistic shooter in which the player needs to either count the rounds
they �re or check the clip to see how many shots are left. While that example
is technically still a �rst-person shooter, it will not be matching the gamer’s
expectations of games within that genre. The following sections will detail
these genres.

1.4.1 Role-Playing Games

Role-playing games are ones which allow the player to create a character
representation of themselves within the game. The created character may
be one that closely matches the real person or may have nothing at all in
common with the player of the game. The character will be de�ned by a set
of attributes and skills which they can perform; and how well the character
does certain actions within the game will be determined by these skill values.
Over the course of game play, the player will be able to level this character by
performing actions that will grant experience points; these experience points
may then be applied to the character to improve skills or acquire new skills.

10

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Players can also acquire items to equip their character with, such as armor and
weapons to help the character be more successful within the game world.

These games have their origin in the heritage of the pencil and paper
role-playing games such as Dungeons & Dragons but have matured on their
own within the video game world. These games may be played in either a
�rst-person perspective, in which the game is viewed through the eyes of
the character, or a third-person perspective, in which the game character
is visible. Bethesda is famous for making role-playing games such as Skyrim
(shown in Figure 1.2) or Fallout.

1.4.2 Adventure Games

Adventure games had their heyday in the 1980s and 1990s, especially under
the guidance of studios like Sierra. There are a couple of types of adventure
games that we will look at: the traditional point and click and the text
adventure. Generally speaking, this style of game lacks violence and is not
dependent on the re�ex abilities of the game player; rather the focus of
game play is on solving puzzles and riddles, some of which may be incredibly
obtuse. With the point and click variety, the player is presented with a scene
and they are able to click items within the scene to interact with things, for
instance, clicking a roll of tape will pick up the tape and add it to the player’s
inventory. As the player interacts with objects on the screen, they can solve
potential puzzles that are presented to them. For instance, in The Book of
Unwritten Tales: The Critter Chronicles (shown in Figure 1.3), it is the player’s
responsibility to �gure out how to get the human character away from the
monster (at least in the depicted scene). The player has various hints and
clues within the scene and as they click on things and combine objects in
their inventory they can solve the puzzle that the developers have created.

11

Introduction

FIG 1.2 Skyrim by Bethesda, is an example of a role-playing game.

Text adventures, on the other hand, do not utilize any graphics at all so there
is nothing to point and click. These games commonly called interactive
�ction are entirely in text with the world being verbally described and the
player entering commands through a text prompt. The systems of these
games can be extremely picky about the exact words that they recognize,
leading the player’s to sometimes have to solve the riddle of how the system
wants them to word a speci�c command aside from the other puzzles and
riddles that are presented. This genre was once a very large genre in the PC
world when graphics were not very powerful; however, today this is a niche
genre at best. Still, for narrative developers, the text adventure genre can
be an excellent place to spread your wings and experiment on story ideas
without having to focus on graphics and other content.

1.4.3 Platformer Games

Traditional and classic arcade games from the golden era of the arcade are
members of the platform genre. These games include such classics as Pac-Man
and Donkey Kong. Games of this genre are de�ned by the player being
required to complete certain tasks that require re�exes or quick thinking in
order to avoid being destroyed by something within the game. While there
may be enemies that challenge the player and that can be destroyed by the
player, these confrontations are not the primary focus of the game; the game
play is more centered on solving puzzles and challenges through re�ex skills
than on �ghting and violence. Even the �ghting that does occur, such as boss
battles at the end of levels, require a degree of problem solving in order to
discover the boss’ pattern and counteract it. These games generally have a life
system in which the player has so many lives and after they have lost those
lives the game is over. The game play is entirely dependent on the game

12

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 1.3 The Book of Unwritten Tales: The Critter Chronicles developed by KING Art.

player’s skill with pushing buttons and other control mechanisms. While the
examples thus far have been two-dimensional games, we can create platform
style games within the three-dimensional game world as well; Super Mario
Galaxy (shown in Figure 1.4) is an example of a three-dimensional platformer
game as it contains all of the elements of this style of�game.

1.4.4 Shooter Games

Shooter-based games revolve around the player �ghting with and destroying
bad guys. When we hear the genre shooter, we immediately think of guns;
however, a shooter game could be created without using a gun as the primary
weapon for the main character. Keep in mind that these genres are intended
to provide a generic outline of the game play and game experience, not
necessarily a literal perspective of those. A shooter game can be either a �rst-
person perspective, in which the player sees the game world through the eyes
of the in-game character; or a third-person perspective, in which the character
controlled by the player is visible. In either case, the player will be given a wide
variety of weapons to use as they attempt to defeat the enemy of the game.
The game’s enemy may be alien invaders, in the case of Halo, or a terrorist
organization, in the case of Call of Duty, or it may even be other players in the
case of Team Fortress 2 (shown in Figure 1.5). With shooter-type games, there
are no puzzles to solve, or if there are they are rudimentary in nature. The only
challenge presented to the player is the number of enemies that are trying
to destroy the player and the limited ammunition and health that the player
has for the current level. These games can exist in single-player or multiplayer
modes and can also have complex story lines for the players to experience or
no story at all except for what the player creates during their game play.

13

Introduction

FIG 1.4 Super Mario Galaxy by Nintendo.

1.4.5 Action Games

The action genre of games is almost a catchall in that it contains so many
games that could almost �t into other categories. Racing games, for
instance, could be labeled as a simulation or a sports game, but are many
times thrown in with action games. The same goes for what has become
known as the action–adventure genre—games such as Assassin’s Creed IV:
Black Flag (shown in Figure 1.6) have much in common with the shooter
genre but also much in common with the platform genre. Fighter games

14

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 1.6 Assassin’s Creed IV: Black Flag developed by Ubisoft Montreal.

FIG 1.5 Team Fortress 2 developed by Valve.

such as Street Fighter and Mortal Kombat also fall into this action genre of
games. Essentially, an action game is a game in which there are many things
for the player to do or a con�ict type of game in which there are attack
combinations and other rapid button sequences. Game play varies slightly
depending on the speci�c game, but as a hybrid type of genre, the game
play can be heavily in�uenced by the other genre that the speci�c game
is drawing upon. At its core, the action genre requires fast re�exes from
the player as well as knowledge of the di�erent button combinations and
sequences possible with the controllers.

1.4.6 Strategy Games

Strategy games have two subcategories that need to be considered: real-time
strategy and turn-based strategy. In either case, the central feature of a
strategy game is the player’s ability to process data and information in order
to determine the best potential way to beat opponents. Strategy games
can be played against arti�cial intelligence (AI) opponents or against other
human players or can be played in teams (against other teams of humans or
computer-controlled teams). Strategy games require resource management
as there are limited quantities of resources within games that must be utilized
for the construction of other game units needed to become more powerful
or in some other way expand your side’s advantage over the other side.
Examples of strategy games include Civilization V and Europa Universalis IV
(shown in Figure 1.7). Turn-based strategy games allow the game play to
pause between turns as each player develops a plan of action for their side
to perform during the next turn sequence. Generally speaking, the player
is allowed to take as long as they want to formulate a strategy during a
turn-based game making these very mental and completely independent

15

Introduction

FIG 1.7 Europa Universalis IV by Paradox Interactive.

of the gamer’s re�exes or memorization of shortcut keys. Real-time strategy,
on the other hand, has all of the players taking their turns at the exact same
time with no pause in the game action. Whichever player can locate and
get a worker to that treasured pile of wood is the player that gets to keep it,
unless the other players come �ying in with massive troops and kill the initial
player’s lone worker. Either type of strategy game presents the player�with
a view of the game world with some parts of it hidden until the player has
discovered those regions. The player makes the best choices that they can
with the information that they have available to them at the time that a
choice must be made.

1.4.7 Simulation Games

The goal of a simulation game is to mimic, as closely as possible, some
real-world system. We can create games that are simulations of the business
world such as Capitalism Plus or simulations of city management such as
Sim City. It is common for simulation games of those types to get somewhat
confused with strategy games due to the strategic elements of the game.
However, the games are simulating a real-world system. Whatever is
simulated, we must get the game to not only act like that thing, such as an
airplane in Microsoft Flight Simulator X (shown in Figure 1.8), but the game
must also accurately simulate the appearances of the control mechanisms
for what is being simulated, such as a crane. These types of games have
often been viewed as a niche market due to the level of expertise and
knowledge that the player is required to obtain in order to play the game
successfully; however, with the rise of gami�cation, which is using game
technology to create applications that are not explicitly a game, these
types of games are becoming more popular outside of the gamer world,

16

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 1.8 Microsoft Flight Simulator X developed by Microsoft Game Studios.

thereby making them a more popular type than they used to be. Just as
these games are very demanding on the player, they are equally demanding
on the developer as we must become extremely knowledgeable in the
subject matter that we are simulating in order to know what should happen
and why so that we can properly develop the software to generate that
required�behavior.

1.4.8 Sports Games

Sports gamers are an interesting hybrid genre. They are a hybrid because
many of them will utilize the re�ex systems of a platform game by requiring
the player to click the correct button at the proper time in order to throw
or hit a ball in combination with the simulation genre as the goal of these
games is to get as close to the real sport as possible. Within the sports
genre, there are entire simulation systems that do not utilize any direct
player control during the games, such as Out of the Park Baseball or Football
Manager. These games have a very strong simulation engine at their core
and through statistical modeling are able to provide the gamers with a
simulation of these sports and the businesses of these sports. On the other
side of the sports genre are games such as Madden or FIFA in which the
player takes direct control of a participant within the sport and through
re�ex button presses can take an active role in determining the outcome of
each individual game played. These games are attempting to provide the
player with an experience that is as close to the real sport as possible, and
it will be very interesting to see how these games utilize virtual reality over
the next few years (Figure 1.9).

17

Introduction

FIG 1.9 R.B.I. Baseball 15 developed by MLB.com.

1.4.9 Puzzle Games

With the explosion of Facebook and mobile gaming, the puzzle category
of games has found a new home and is enjoying a huge popularity at the
moment. Puzzle games revolve around requiring the player to �nd a solution
to a speci�c puzzle before them. Unlike adventure games, there is no story
or reason for the puzzle per se; it is just a puzzle that the player must solve to
win. Hidden object games are puzzle-type games as players try to �nd the
objects that are hidden among other objects on the screen within a speci�ed
time limit. Matching games such as Bubble Pop or Bejeweled 3 (shown in
Figure 1.10) are also puzzle games in which the puzzle is to �gure out how
to move your pieces around in order to create a match of at least three of a
kind. Due to their quick play nature, these games are very good choices for
mobile gaming and can even be inserted into other genres to provide the
player with a puzzle to solve in order to advance within a level. Stories can be
added to the game experience to provide a background for why the player is
solving the puzzles; however, the story is not necessary to the experience of
the game as the player’s focus is to score as many points as possible within
the small amount of time that is allotted for each game-play session.

1.4.10 MMO Games

Online games provide players with the opportunity to explore the virtual
game worlds as an individual or with groups of players. Players are given the
opportunity to create a character that will be their representation within the
game world, just like with role-playing games, and through the game-play
experience allow these characters to grow and become better at performing

18

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 1.10 Bejeweled 3 developed by PopCap Games, Inc.

certain tasks. The game play itself is generally of the action–adventure game
style combined with the role-playing style along with the added bene�t
of being able to play the game with small or large groups of other players,
including playing against those players. Traditionally speaking, MMO games
charged a monthly subscription fee, but in recent years there has been a
trend toward a free-to-play model in which gamers can get and play the
game for free, but there are certain cosmetic features which will cost money
if a player desires those additions in their game. These games also have large
story lines with many quests along both the primary story and also along
other side story lines that may involve the player’s selected class or character
race. It is interesting to note that while these games are very popular,
according to the Entertainment Software Association (ESA), among online
games that are played, only 4% of the online games played are MMOs, most
of them are casual or puzzle games, once again due to the explosion of
Facebook and mobile gaming (Figure 1.11).

1.5 Summary
Throughout this chapter, we looked at game development from a bird’s-eye
type of perspective. It was not our goal to get into the nuts and bolts of
game development and come out of this chapter with a full knowledge of
how to create a game. Rather, we have emerged with an understanding and
realization that games, gamers, and game developers are a wide range of
areas with di�erent specializations and preferences. Now that we have a basic
foundation for the background of the video game industry and how things
theoretically work in this world, we are ready to continue and begin the

19

Introduction

FIG 1.11 Star Trek Online developed by Cryptic Studios.

process of designing a game of our own. We have come face to face with the
reality that playing games and making games are two very di�erent things
and that our vast experience as game players may help give us ideas to draw
upon as game developers. We have also taken a look at the many di�erent
skills that are used when creating a video game, and while this book will
only focus on a speci�c subset of those skills, we are aware that what we will
learn and practice throughout this book is part of the larger family of game
development skills.

Vocabulary
Gami�cation
Role-playing game
Hybrid
Simulation game
Strategy game
Adventure game
Text adventure game
Sports game
Puzzle game
Action game
Shooter game
Platformer game
Genre
AAA studio
Indie studio
Casual gamer
Hard-core gamer
Real-time strategy game
Turn-based strategy game

Review Quiz
 1. What are the di�erences in the Bartle character types?
 2. What are the di�erences between an AAA and an indie studio?
 3. What is the average age of a gamer?
 4. Approximately how many Americans play video games?
 5. What software can be used to create character models?
 6. What software can be used to create levels for games?

Exercises
 1. What types of games do you like to play?
 a. Why do you like to play these games?
 2. Given the two options of an AAA studio or indie studio, which route

would you be more interested in pursuing and why?

20

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 3. Considering your favorite genre of games, what could you add to it to
make it a hybrid with another genre?

 4. Considering the games that you like the least, try playing games from
those genres with the goal of discovering what those players get from
the game. Keep in mind that the goal is not the cliché answer de�ning the
genre characteristics; rather the goal is to actually try to understand these
games and gamers.

Design Document
Throughout this book, we will be demonstrating the design document for
the Sancho Panza project that is built during the writing of this book. Each
chapter will add a new section to the document, and in each chapter, you
will be working on a design document for your own game idea, whatever
that may be. The next chapter will introduce you to the design document
and get this process started; for now, take a deep breath and let’s start
making a game.

21

Introduction

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 2

Design Document

Generally speaking, once we have a cool idea for a game, we are all in a
rush to get to our computers and start building the game. However, as we
will see in this chapter, it is important for us to take some time and think
our game idea through more thoroughly and make sure we are ready to
build this game. Design documents are an interesting aspect of game
development as they are often overlooked, but at the same time, they
are very di�cult (if not impossible) to fully develop without. This leads to
a chicken-and-egg type of situation in which we need to create a design
document in order to build a game, but in order to create the design
document, we need to know how to build a game. We will address this
throughout the book by building our own design document as we go along
and also by having you work on your own design document as you learn
new concepts and skills. Rather than create a full design document in one
go, we will only create the pieces�that we are ready for and �nish with a full

23

document by the end of this book. In this chapter, we will introduce the
design document and why we should use one.

• What Is a Design Document?
• Do We Actually Need a Design Document?
• Are There Other Ways We Can Make a Design Document?
• What Are the Parts of the Game That We Should Design?

2.1 Introduction to the Design Document
The design document is often an intimidating aspect of game development.
Throughout software development the role of the design document serves
as a guiding light for the project that is under development. During the
development of a design document, developers force themselves to focus
on�both the small and the big picture of the project at hand, including a
game project. Before we sit at our computer and begin to implement a
game�idea, we need to know what it is that we are going to be building;
otherwise, we will have issues with continuity and consistency within our
game idea.

This may be better illustrated through a couple of quick examples.
Consider that your friend calls you up and says “Hey, wouldn’t it be really
cool if we made a game where the player could have infrared vision?”
Our immediate response may be to agree that this would be cool and to
charge over to the nearest computer and start creating some textures
in Photoshop to mimic objects as they may appear when viewed with
infrared light. However, as you have probably already noticed, we actually
do not know what objects to create, so should we just start creating
anything that comes to mind or should we spend a little more time with
this idea and �esh out some more details to get a better idea of exactly
what this game could possibly be and if we should even continue working
on�it. Other questions that come up may include whether the infrared
vision is a constant or something that the player can turn on and o�. If it
can be turned on and o�, then we will also need to create textures for the
noninfrared versions of the objects. This infrared idea may be a great start
for a game concept, but we are going to need to know quite a bit more
about the game before we are ready to start building it and this is where
the design document comes into play.

Design documents should contain as much information and detail about
your game idea that you can think of, even if it is not going to show up
in the game. This document is your repository of every thought that
you have had about your game. It should also include any sketches or
pictures that carry some signi�cance for the game whether it be an exact
concept of what you want something to look like or just some really cool
building that you saw somewhere that could be a good inspiration for
something in your game. We also need to consider how the game is going
to be built, the logical �ow of how these ideas will go from abstract cool

24

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

things to functioning behaviors within our game world. The more detail
and the more thought that we put into this design process, the less time
we will spend doing unnecessary activities once we begin the actual
implementation process of our game.

2.1.1 Do We Need a Design Document?

The short answer to this question is “Yes, we do need it.” But the longer
answer to this question is a little more interesting. We need a design
document, but our design document does not need to be your design
document, necessarily. More importantly, we need to quickly recognize
that the design document is intended to be a guideline for the game
project and that each game project is unique and somewhat di�erent
than previous projects. There have been many games that have been
released that have also had a design document appear on the Internet.
In these cases, we can see that the �nal product of the game does not
always match what was speci�ed in the original design document; the
game Neverwinter Nights is an interesting example of this. As long as we
remember that the design document is a guideline for the project and
not the �nal word on any aspect of the project, we should not have any
di�culties. Always remember that the most important parts of a game are
whether it is playable and whether it is fun. If there is an idea within the
design document that turns out to not be fun, then the idea should be
dropped. At the same time, if something is in the document that just does
not work within the game itself, the idea should be dropped or be seriously
reconsidered as to how it is being implemented and working within the
game. For instance, consider the previous thought of a character with
infrared vision, if implementing that concept suddenly makes it di�cult for
the player to di�erentiate between a wall and a door, because they are the
same temperature, and as a result of this di�culty, the player cannot �gure
out how to get out of a room, then this infrared idea needs to be reworked
and might even be dropped from the game altogether.

The bottom line is that we need to spend some time designing our
game before we ever try to build the game. We need to make sure that
we understand what it is we will be building before the implementation
begins. There is a trend in the game industry at the moment to move
away from this formulistic approach to a more fluid and agile style of
development. However, even with this trend, there is still some level
of design that is going on prior to any building. Another example may
help to�bring this idea home. We have decided to hire a 3D modeler
and animator�to help with our current game project. After hiring the
new modeler, we sent the modeler an e-mail letting them know that we
need four new characters created with animation sequences by next
month. To which the modeler responds by e-mail asking what characters
they�need to make. At this point, it would be wonderful to send them a
design document of some sort so that they could see what we need; and
it would not be good if our response was something along the lines of

25

Design Document

“well, we’re not really sure yet, but we are going to have infrared vision
in the game, so, you�know something like that.” Design is very important;
it tells us where we are going; however, we may not take the exact path
we�documented to�get there, but we do need to know where it is that we
are going.

2.1.2 Methods of Design

Thus far, we have been referring to the design document; however, this
wording brings certain images to mind and those images may cause us to
restrict our thinking of how to create a design document. The �rst step, even
though A Word document is being used and even though we have included
a Microsoft Word document with this chapter as an example, does not mean
that it actually needs to be something that is formally typed and entered into
a computer. Our preferred method of design documentation is actually a
composition journal that can be picked up at almost any store. We tend to keep
the journal and pen in our backpack, which is with us wherever we go and as a
result if a thought or idea comes up, it can be quickly written down before it is
forgotten.

Perhaps typing and writing is not your thing, in which case feel free to use
a sound recorder on your cell phone and dictate your design ideas, or buy
a�whiteboard and keep it in your room to jot down ideas. We have even
known someone that bought whiteboard-type paint to paint the walls in
one of his rooms with this special material that can be written on and erased,
with this approach the whole wall became his design document for various
projects.

There are some pros and cons to be aware of and to consider, but ultimately the
documentation choice that works best for you is the one that you should use.
A computer document is nice as it can provide one source or location where all
of your game design ideas are located. Any pictures or sketches that you may
have can easily be added to your document rather than being stored in some
other location. However, a potential problem with the computer document
approach is that we tend to spend a lot of time worrying about layout and how
it looks, which can end up making the documentation process very frustrating
and annoying. If something is frustrating, we are less likely to do it.

Using a pen and paper journal, on the other hand, is easy and convenient
as well as very quick to use. It is very easy to quickly sketch some concept
idea into your journal without having to worry about scanning it or using
some 2D art program to create a rough sketch. But organization can
become an issue with the pen and paper journal approach as pages are
�lled up we have to use other pages at other places within the journal
for any new ideas and sometimes ideas can get lost because we do not
remember where in the journal they were written down. We generally
use the pen and paper approach, as previously mentioned, but then add
any information from that journal into a computer document later when

26

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

we have time and access, although with the growth of mobile devices we
can also use a cell phone to quickly pull up a design document and make
additions or changes to it.

2.1.3 Logical Design versus Descriptive Design

As a general rule, the more descriptive that you can be about a character or
an object within your game world, the more likely you are to get that out of
your head and into the game exactly as you want it to be. This descriptive
aspect is easily overlooked as we tend to make assumptions about details.
We see or are aware of details within our heads, but fail to share those details
with others because we work under the assumption that the information is
common knowledge. A good rule of thumb is to have a friend read what you
have so far and see if they have any questions. Encourage your readers to ask
those questions and if you already know the answer then add them to the
document, if you do not know the answer, then it is time to �gure it out. It�is
easier to remove details later than it is to try to come up with more details
and more information.

Along with the descriptive aspect of a design document, we also need
to consider the logical needs for the implementation of behaviors within
the game project. It is through the design of the logical side of the
game�that we start to find dependencies as well as recognize the needs
of the things in our game projects. By this we mean, for instance,�that if
we are going to allow a player character to have checkpoints that they
can activate during a specific level, this in turn means that we will have
to have a variable somewhere that will store the location of the last
checkpoint that the player touched. It also means that we will need to
make sure that the initial value of that variable is not outside of the game
world somewhere just in case the player dies before finding another
checkpoint and they try to respawn to that initial value. The player
character is also going to need to have a method of determining whether
they have contacted one of these checkpoints or not. That information
may have seemed trivial to us as gamers; however, that kind of
information can easily slip through the cracks when designing and then
later when building the game project that error will continue into the
functional game. Eventually, this problem should be detected, through
testing; however, the bug within the game may not be immediately
obvious to us by that point in time, especially if the game code has
become quite complex. Descriptive text works best for describing levels,
characters, stories, dialogues, and events; however, it is oftentimes better
to create some logical diagram to depict the flow of the behaviors that
we are going to develop. Figure 2.1 shows a logical diagram of this same
checkpoint type of system that we have described. Notice that it contains
the same information, but through this diagram style display, it is easier
to follow how this system could be constructed once we know how to do
such things. It is also easier to understand the checkpoint system as the
descriptive version was somewhat confusing.

27

Design Document

Note
The more information that we provide in our design document, the
easier it will be to construct our game later. We can always drop some of
the detail and information if needed.

2.1.4 Mission and Vision

The last thing that we would like to mention in regard to the reasoning
behind a design document is this idea of mission and focus. Within the
business world, a mission statement is something that de�nes the goal of
the business. Businesses spend large amounts of money hiring consultants
to help with the development of a mission statement. These statements
allow everyone working for the company understand what their goal is,
why the business is there, and how the business will go about reaching its
goal. For example, part of the mission of Dark Glass Studio, our indie game
development studio, is to create games that do not rely on mature content
to deliver the story and experience. This is not to say that mature games
should not be developed, it is just part of the mission of our studio to make
games without that. Knowing this mission, knowing this method of game

28

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Start game
Initialize starting checkpoint
Saved point = Starting location

Task complete

Wait for collision with checkpoint

Collision with checkpoint

Save point = Location of checkpoint we collided with

Task complete

FIG 2.1 The logical diagram for a checkpoint respawn system.

development, helps those that work with us to recognize the type of content
that will be developed for each game. This example can be extended with the
following question: Which game studio would you like to work for and why?
Most likely, the answer for this question is going to be because you enjoy the
games that that studio makes and if the studio were to suddenly start making
completely di�erent games you probably would not be interested in working
for them. While the type of games they make may not be an inherent part of
their mission statement, this does illustrate the idea of understanding how
the company works or how the game will be constructed. Design documents
help us to get this mission of the game across by listing and describing so
much of the game that it is clear what will be included within the game as
well as what will not be included in the game.

The other aspect is the vision of the game. Where the mission is how and
what will be done by a business or game, the vision is more of an inspirational
guide for where the business may be in a few years, think of this as goals for
the business to accomplish. We can apply this to a game project by asking the
question why we are making this game. What do we want people to get out
of this game? The answers to those questions are the vision of the game. Now,
to be realistic and honest, this type of question is most commonly answered
with two speci�c answers: we want the players to have fun playing our game
and we want to be able to sell the game and make money. There is absolutely
nothing wrong with those as a vision for the game, but sometimes, every now
and then, a game project comes along that has a di�erent vision. An example
of a game vision being something other than players having fun and making
money is an ongoing project that we are working on with students at Wilkes
Community College, which is a Facebook-based game developed for a local
horse rescue ranch. The vision of the game, why it is being developed, is to
provide students with an opportunity to work on something that is not just
a “school project” and to also help raise awareness in our community about
the game development program. The project is also being developed to
meet the needs of the horse rescue ranch, raising awareness of the plight for
abandoned and abused animals while giving their �nancial donors something
interesting to do rather than just mailing a check. Vision—why we are making
a game is very important and it is something that everyone on the team needs
to be aware of and be onboard with.

2.2 Sections of the Design Document
There are many design document templates available online. Google Docs
has one listed and there is also the very thorough template developed by
Chris Taylor, which is also available online. These templates form wonderful
starting points for the development of a design document as oftentimes the
�rst question is where to even begin with such a seemingly daunting task.
However, both of these templates have a depth of information that we have
opted to avoid in this introductory look at the design document and at this
process in general. We have provided a much stripped down and streamlined
version that is available from the companion website for this text.

29

Design Document

Download
Our design document template can be downloaded from the companion
website in the Chapter Resources section, the �le name is: “Design
Document—template.”

Before we jump into the document and start editing it for our great game
idea, however, we need to look at what each section is about and why
we even need to consider thinking about such sections. Some of these
sections will immediately strike us as so obvious that we would do just �ne
by skipping over them and not even worrying about them; however, as we
will see, the design document not only describes the game we are creating
but also de�nes the overall vision of the game, and it is vital that everyone
working on the project be on the same page and working toward the
same�goal.

2.2.1 Game Concept

Our design document should begin with a concise discussion of the game
itself. This section should not be very long, a page or two should be more
than enough. The goal in this section is for the reader to get the mission and
the vision of the game right away, rather than having to wade through many
pages of information to try and �gure it out. If this section cannot be done
in under two pages or if it is extremely di�cult to write, then we are not yet
sure what the game is that we want to make. Essentially, this section is the
traditional high concept or elevator speech portion of a design document.
We should be able to knock this part out pretty quickly.

This section begins with the game description, which is what the game is
about. If we need 15 minutes to tell someone what a game is about, then,
in actuality, we do not even know what it is about. As an example, what
is Super Mario Bros. about? It is about the main character, Mario, rescuing
Princess Toadstool from Bowser and his stooges in the Mushroom Kingdom.
Notice that the description of the game does not go into what all the players
can do or even how it is the player does anything, it is just a quick sentence
or two describing what the point of the game is. Even modern games can
be described in a couple of sentences, no matter how complex the game
may�be. For instance, Civilization by Sid Meier, is about the player leading
their society from a nomadic lifestyle all the way through the space race. How
the player does this is not the point at all.

Following the description of the game, we have the opportunity to expand
on the game concept by providing some target information for the game.
Who are the players for our game? This may seem like a question that is
not very important or we may want to whitewash it by saying the target
audience is whoever will buy our game. But we need to consider it a little
more carefully than that as the target audience of the game, as well as
target genre, rating, and platform, will have an impact on many decisions

30

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

later, and remember this is the vision and mission of the game. Consider
creating a �rst-person shooter game for military use versus creating one
for kids that enjoy water gun �ghts. Both games are �rst-person shooters,
but the behaviors of the weapons, as well as the weapons themselves, will
be drastically di�erent between the two. Going along with this is the genre
or style of game that we want to make. When we say that we are making
a �rst-person shooter, there are certain things that all of us picture in our
heads that go with a �rst-person shooter. These things range from the
camera perspective of the game to the activities involved in the game to the
in-game user interface. However, if we were to say that we are going to create
a strategy game, suddenly what we have in our heads looks completely
di�erent. Remember the primary goal of a design document is to make sure
that everyone on the development team is on the same page, the more
information we know about the game the better o� we will be.

In our targeting section, we also have the Entertainment Software Rating
Board (ESRB) rating and the type of system that the game will run on. These
both are very important as a game created for the WII will have a very di�erent
control scheme than a game created for the PC or a game created for a mobile
device. We need to know what type of system we are targeting to make sure
that what we are building is suitable and also to take advantage of the various
aspects of the system. As an example, constructing a text adventure game
for a mobile device would not be the best of ideas, sure it can be done, but as
soon as someone reads our target platform and target genre they should ask if
that speci�c genre is best suited for that platform. There are always times and
reasons to break genre stereotypes, but there are also reasons to stay within
the expectations of players and the playability of the devices.

The ESRB ratings, as shown in Table 2.1, help us understand the type of
content we will be developing to incorporate into our game. For instance,

31

Design Document

TABLE 2.1 Current Entertainment Software Rating Board Rating System

Rating Meaning Type of Content

eC Early Childhood The content is speci�cally intended for young children.

E Everyone The content is suitable for anyone. May contain minimal mild violence
including cartoon or fantasy violence, or infrequent use of mild
language.

E10+ Everyone 10+ Anyone over the age of 10. May contain mild violence, or violence in
cartoon or fantasy depiction, mild language, or minimal suggestive
themes.

T Teen Suitable for anyone over the age of 13. May contain violence, suggestive
themes, crude humor, blood (in small amounts), gambling with fake
money, or occasional strong language (profanity).

M Mature Suitable for those over the age of 17. May contain strong violence, blood,
gore, sexual content (not explicit), or strong language (profanity).

AO Adults Only Only suitable for adults 18 and up. May contain long scenes of intense
violence, explicit sexual content, or gambling with real money.

if�we know that the game is going to be E or T rated, then we also know that
there will not be any gore spatter or profanity in the game. If we want to
include those components, then we need a di�erent rating for the game.
Likewise, if I want to work on a game with mature content, then perhaps
this project is not one that I would want to consider being a team member
on. We are returning to that idea of mission and vision and making sure that
everyone is on board. Granted in mainstream industry, it is a job and we do
what is required of the job, but as an indie developer, we have the �exibility
to explicitly pick the projects that we want to work on.

The features of the game provide a list of all the player can do during the
game and what can be done to the player. It is not necessary that this list be
exhaustive and all inclusive, but the reader should be able to read through
this list and know what the player can and cannot do during a typical
 game-play session. As an example, if the player has the ability to see in
infrared then this should de�nitely be listed as a game feature. Be careful of
feature creep, which is the process of new features being added to a game
project during the development process. While it is important for our game
designs to be �exible and adaptable to what is playable and fun in the game,
it is also important that new features do not keep getting added to the
project; otherwise, we will never get it �nished. Another issue with feature
creep is that some features actually cannot be added without doing a major
rework of the underlying game system. Flying is an example, if we were to
decide that it would be wonderful if our Sancho Panza character could �y
then we will need to return to the model and create an animation system
for this. We will also need to rework our control scheme to allow the player
to activate this feature and then redo our level layouts as currently there is
nothing in the sky for him to do, not to mention that he could �y right over
the arti�cial boundary systems we have constructed.

Whenever we are introduced to a game, our �rst questions tend to go in
the following order: what is the game about, what can I do in the game,
and how do I win the game. We have already addressed the �rst two
questions and now it is time to take on the third. For instance, Mario can
win by rescuing Princess Toadstool, and the player in Civilization can win
by being the �rst to be in space or destroying all the other civilizations.
Generally speaking, this category is fairly straightforward and easily
derived from the description of the game, but once again, it is important
to make sure that we know exactly where we are going with this game.
Along with this are the similar games, these are games that may be
inspirational to the current project. For instance, our horse rescue ranch
game, mentioned earlier, may be similar to Farmville, PetCity, and Zoo
World. We are not saying that we are copying these games or even that the
project will have the same features as these, only that these are similar to
it and perhaps we would like to incorporate some components from those
games into our project.

With this section of the design document complete, we should now have
a pretty solid understanding of the game that we would like to make.

32

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

We�should have a good idea of how it is going to behave based on the game
features and the target genre. We should also have a strong idea of what it
is going to contain based on the ESRB rating, audience, and similar games.
All of these put together have given us a strong concept of the mission and
vision of this game, and the pages that will follow in the design document
will all relate back to this quick introduction to the game.

2.2.2 Game Characters

Most games have characters; there are notable exceptions to this, but
generally speaking, games have characters that are either representations
of the player within the game world or are something that the player can
interact with during game play. We need to consider the characters of
our game and get to know them as well as we possibly can. This section
will include both verbal descriptions as well as concept art to go along
with these�characters. The more that we put into this, the more that we
know about the characters within the game, the closer we can get the
game versions of these characters to the initial ideas in our head. Another
interesting aspect of this section is that we also need to start considering
how these characters behave within the game world. This varies from how
the player can control their main character to what the other characters
in the game can do and how they make these decisions. As you may have
noticed, it is di�cult to design the logical �ow for this if we do not know how
to program. We could view this as trying to make a blueprint for a house
without knowing how a house is built; for instance, things like load-bearing
walls are pretty important in the design of the house.

When creating characters for a game, there are essentially two main
categories of characters. The �rst are the primary characters which include
not only the player’s character but also the main characters that the player
will interact with during game play. For instance, in our Sancho project,
we will be adding in a character to serve as his wife, Teresa, which will be
the primary source of quests and objectives for the game. We will also be
adding in a spider character that will be there for the sole purpose of trying
to bite and kill Sancho. Here in the design document, we need to describe
these characters: their background, their personality, why they are in the
game, what they want, and also how they do whatever it is that they do
within the game. The more detail, the easier it will be for us to construct
these characters. The other group of characters are window dressing, or
characters that are in the game but just do not really do all that much. An
example of such a character for Sancho will be the sheep that he can go
around and gather. All they do is stand there, eat grass, and follow Sancho
around after he has found them. They do not �ght anything and nothing
�ghts them. Once Sancho has returned them to their pen they just stay
there and eat grass. Not an overly exciting life, but that is what we need
them to do.

We will hit this section pretty hard when we get to our chapters on the player
character and non-player characters. However, before we leave this section,

33

Design Document

notice also that we need to begin to consider the art assets that will have to
be developed for all of the characters for the game. Not only do we need to
construct the models and animations for the characters, but also any other
objects that they may need to use. For instance, if we were to decide that
Sancho Panza could swing a sword as part of the player control system, then
that means that we will need to construct the model of a sword for Sancho
to hold and also an animation system of him swinging that sword. This
information is very important for the art team of any project to know, we
need to know what exactly it is that the developers need built for the game
project—remember our example from earlier about hiring a 3D modeler
and asking them to build some characters by next month. When working
on this section do not expect to sit down and run through the whole thing
in one go,�there are characters that may be added as the game continues to
develop, but we really do need to get the primary characters down as quickly
as possible.

2.2.3 Game Story

After developing our game characters, or perhaps before creating them
depending on our preference, we need to determine the story of our
game. There are many games that do not contain stories and that do not
need stories at all. However, if we consider a story at its most basic level, it
is nothing more than what the game is about in a little bit more detail. For
instance, our Sancho Panza project is about the main character, Sancho
Panza, returning peace and tranquility to an island kingdom called Barataria.
That is what the game is about; however the story of the game is far more
than just that. As we read the description of this game, we should have
questions that pop into our heads. Questions such as:

• Where is this island of Barataria?
• Why is it not peaceful?
• Where was Sancho before the island?
• How did Sancho get to the island?
• How did Sancho hear about the island?
• Why does Sancho want to save this island?

There may be other questions that come to you, but these serve as a strong
starting point. All of these questions can and should be answered by the
story of the game. The backstory or background will provide the information
as to what has happened prior to the game starting whereas the story
itself will provide the information of what happens during the game. The
interesting thing about this story stu� is that the plot within the story ends
up becoming the challenges and obstacles that our character must overcome
during the game, or more speci�cally the things that the player must
accomplish in order to beat the game. Remember that beating the game is
a victory condition, so while we have already speci�ed the victory condition
the story may describe how the main character gets from the beginning of

34

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

the game to that victory condition, assuming that the player performs the
required tasks with the needed skill level.

The story section also allows us to provide a descriptive account of what this
world is like, the basic questions of who, what, when, where, why, and how
are all generally answered through the story of the game. While the game
description and victory conditions may provide a hint to this information,
the game story �eshes out those details. It is interesting to note that in all
probability much of our story work may not even show up in the game itself
for various reasons, at any rate we will get into this in much detail with our
chapter on story and development.

2.2.4 The Game World

The game world is the environment in which the game actually takes place.
While the story section describes what occurs as well as a solid foundation for
the environment of the story, the game world is more focused on the artistic
aspect as well as game-play components for our game project. It is important
for us to have a clear understanding of what our game world looks like
artistically; there is a vast di�erence between a cartoony cel-shaded game
world and a gritty photo-realistic one, and we need to know what it is we
are trying to create before we start creating anything. This is a great place to
gather concept images, which are images and photos that give ideas about
what this world would look like. These images do not have to be exact, they
are just inspirational for the eventual art work that will go into constructing
the various game levels and world.

While the appearance and styling of the game world is very important, from
a game-play perspective, it is more important for us as developers to know
what the levels actually look like and what the players can do within the
levels. A top-down map sketch of each level is very bene�cial so that when it
comes time to start building these levels we know exactly where it is that we
need to put all of the various pieces that have been made. We also need to
consider what the player can and cannot do within each level; for instance,
Sancho cannot run o� the island and go �nd mainland Europe, we just are
not going to allow that mainly because we do not want to have to build all of
that stu� on the o� chance that some player decides to see what is out there.
Being aware of this, our descriptions and concept sketches for the island will
contain barrier information to keep Sancho locked on the island itself.

We should also consider how each level ties back into the story itself. As we
will discover later, stories tend to be episodic in nature, that is to say, that
they tend to have chapters. As it turns out, games tend to have separate and
distinct levels that correlate very nicely into episodes or chapters of our story.
So, each level may correspond to a speci�c part of the story that we have
developed for the game, we need to know this information as the challenges
from that portion of the story should be incorporated into the level design
in some way. We are not saying that each level must exactly match a part
of�the story, only that they should represent a part of the story. How much of

35

Design Document

that story component is included in the level will ultimately depend on the
playability and fun factor of that level as we will see in our chapter on game
worlds and environments.

2.2.5 Game Audio

Game audio, as we will discover in Chapter 9, is an easily overlooked aspect
of game development. It is very easy for us to think that we will just grab
a couple of music �les from here or there and a couple of sound e�ects
from here or there and the audio will be done, it will be easy. The irony here
is that audio actually is quite easy to implement within a game project,
especially in Unity; however, it tends to take a whole lot longer to both
�nd the correct audio and to tweak it in the game than we expect. This�is
where design can come in to save the day. It is surprising how just making a
list helps us to realize that a given task is going to require more e�ort than
initially thought. For instance, consider the following statements, “I need
you to pick up a couple of things from the grocery store” versus “I have a list
for you next time you go to the grocery store.” Notice that in both examples
the amount of things to get is not speci�ed and for all we know the amount
is exactly the same. However, as soon as someone says they have a list for
us we immediately imagine all of this work we have to do. How many times
have you looked at a list and responded with “Oh, well this isn’t too bad,
I�can do this.”

The primary purpose of the audio section in our design document is to force
us to start thinking about the audio in our game and start gathering those
assets. Music is surprisingly tricky due to copyright and legal issues. Finding
the music that exactly matches what we want and having the legal rights to
use the music is going to take some time; the sooner we get started on it the
better o� we will be. If we wait until we are ready for the music to be thrown
into the game, the search becomes frustrating instead of fun as the music
really does help to de�ne the overall feeling of our game. By describing the
music that we want and providing some quality examples of it, this task of
getting the music can then be delegated to someone and what they come
back with later should match what we want, or at least be close enough that
we are good with it.

The same thing goes for sound e�ects within a game. We do not fully realize
how many events and actions in our game we want sounds for until we start
making a list. Many of those actions that we put into the character control
systems will need sounds to go with them. This includes seemingly simple
things; for instance, consider a character jumping:

• Do they make a sound, grunt maybe, when they jump?
• Do they make any sounds when they are in the air?
• Do they make a sound when they land?
• Do they make any sounds while they are falling?
• Do they make di�erent sounds based on the surface they land on?

36

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

If we wait until later in the game, we are more likely to decide that feature X
is not really that important because we are burned out looking for sounds
and just want to advance the game project and get it �nished. This brings us
back to the role of a design document, to help keep us on track and help keep
us focused. If we have already gathered a whole bunch of audio �les that we
think we might want to use for various actions in the game, then when we start
implementing those it goes much smoother and the game feels like it is really
coming together instead of starting to fall apart at that point in time. We will
spend a chapter on the audio and implementing it within our game project.

2.2.6 Game Interface

The �nal section for our version of a design document is the interface system
that we will be using within the game. This is another area that can be viewed
as really easy until we start to do it. Many times the creation of a user interface,
whether a menu system or an in-game overlay system, is going to involve
quite a bit of 2D art work. If we do not have the art work available when we
get to those stages, then the project can slow down drastically as we go o�
and work on that. Also, if we have not considered the overall layout as far as
colors, fonts, and positioning, then we will spend quite a bit of time trying
di�erent ideas until we �gure out what it is that we want to do with the game.
We have returned, once again, to the idea that the design document should
serve as a guideline for our game project; it keeps us on track and helps us
to know where it is we are going and possibly even how we will get there in
the case of many of the sketches and diagrams that are developed. If we are
utilizing menu systems in our game, what role they serve and how the player
interacts with them are just as important to consider as what the systems will
actually look like. Many times during this questioning and designing stage of
game development we will discover aspects of the game that we did not even
realize we were going to have to create or we may even discover parts of the
game that really just do not �t after we think about them some more.

Fonts are a tricky thing and we need to make sure that we have the legal
rights and licenses to use any fonts that we are incorporating into our
game projects. When working on noncommercial projects there is a lot of
legal leeway with what we can do; however, as soon as we start selling a
game or trying to make money from a game, the legal landscape changes
drastically and these are issues that we should consider while designing
the game, not after it has been released. We will focus on the various
interface systems available in Unity and how to update them through
PlayMaker later in the book.

2.3 Summary
Throughout this chapter, we looked at the design document for a game
project. We have focused on the initial section of the design document,
the game concept, and will �ll in the other sections as we go through this

37

Design Document

book. At �rst glance, we may overlook the design document as something
of drudgery that we really do not want to do or perhaps something that
we will do after we have built the game, but after this chapter, we can see
how having a guideline and direction for where we are going will have a
very positive and bene�cial in�uence on the rest of the game development
process. While it is de�nitely not necessary to focus on a formal document
within a computer word processing program, some kind of documentation
should be done for our game projects; otherwise, we will forget some of our
great ideas and may even lose focus during the development of our project.
This document helps us to stay on track and as we will see throughout
the rest of this book there are many diversions and detours during game
development that can send us o� on wild goose chases and prevent us from
�nishing our game. The best way to learn game development and to become
better at it is to �nish games, starting a game and not �nishing it really does
not help us and the design document can help us to �nish a project, which is
a good thing.

Vocabulary
Design document
Mission statement
Vision statement
Descriptive design
Logical design
Target audience
Target platform
Target ESRB rating
eC
E
E10+
T
M
AO

Review Quiz
 1. How can the expression “a picture is worth a thousand words” be applied

to a game design document?
 2. What is the di�erence between a rating of E and a rating of T?
 3. Are we required to use a computer and word processor for the creation of

a design document?
 4. What is the primary role of a design document?
 5. Can we create a game without a design document?
 6. Why would we need to know what system we are building a game for?
 7. What is the di�erence between a game genre and a target audience?

38

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Exercises
 1. Consider one of your favorite games:
 a. What is that game about?
 b. What are the features of the game?
 c. What other games are similar to the game?
 i. In what ways are they similar and what ways are they di�erent?
 d. What is the rating of this game and what would have to be changed

to go to a rating of T (if the game is currently M) or M (if the game is
currently not M)?

 i. Would this positively or negatively impact the game? Why?
 2. Consider your favorite game platform:
 a. What advantages does it have over other platforms?
 b. What disadvantages does it have over other platforms?
 c. If you were to design a game for this platform, how would you try to

leverage the advantages and minimize the disadvantages?

Design Document
In this addition to the Sancho Panza design document, we have started the
work on our design document by �lling out the title pages as well as the
game concept section.

Download
The updated version of the Sancho Panza design document can be
downloaded from the companion website within the Design Document
archive, this chapter’s document is named: “Design Document_Chapter 2.”

Take some time to consider one of the many amazing game ideas that you
have had over the years. As you think about these, pick one to focus on
during the course of this book as a design document exercise and start
constructing your design document for that idea. Add the following to it:

 1. Name of the game, this can be changed later or even skipped for now.
 2. Your name.
 3. Game concept section.
 a. Game description, what is your game about?
 b. What and who are you targeting with your game?
 i. Why are those the target?
 c. What features will you put into the game?
 i. This section can most de�nitely be expanded as we continue, but

you may want to jot down some initial ideas.
 d. How does the player win or lose your game?
 e. What other games are like this one or what games have inspired you

to want to make this game?

39

Design Document

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 3

Using Unity and PlayMaker

Now that we have some background information on the various
development tasks that need to be done and a basic overview of how to
approach these, it is time to get our development environment con�gured
and get to know our way around it. It is a common mistake to try to learn
every aspect of a development tool in one go; as a result, in this chapter, we
will focus on the basics that we need to know in order to get started with our
game project. As we need to know more about either Unity or PlayMaker we
will add to our knowledge base at that time, rather than try to get our heads
around all of it right now. Just as creating games is an iterative development
process, so too is learning the tools and techniques. Each new piece of
knowledge will stand on the foundation of some previous piece that we have
already gotten a good grip on. With these ideas in mind, in this chapter, we
will focus on

• Getting and Installing Unity 3D
• The User Interface of Unity 3D
• Game Objects and Their Components
• Projects and Scenes

41

• Getting and Adding PlayMaker to Our Project
• The User Interface of PlayMaker
• Finite State Machines in Design and Implementation

3.1 Installing Unity
Before we can install the Unity game engine, it will have to be downloaded
from the Unity website: http://www.unity3d.com. While at the website,
it is worth it to take a few moments and browse around the links that are
available in the top-level site navigation as seen in Figure 3.1. Unity provides
a showcase gallery to view other products that have been made with Unity;
they also have a hashtag (#madewithunity) for use with any Twitter posts to
help get the word out not only on the Unity game engine but also on any
project that you may be working on. Through this showcase link on the main
page, you can browse through all of the games that have been posted with
this hashtag. Browsing through this directory will reveal many interesting
titles, and it is an encouraging process to play what others have made with
Unity as it can help us stay focused and also realize that what we are trying to
do is possible, if we stick with it.

The Community link will give you access to the Unity forums and a Q&A
knowledge base. Both of these are very active with questions and solutions
being posted on a regular basis. It is reassuring to know that if we run into any
problems with Unity during development that there is a community willing
to help �nd solutions. Not only can questions be posted about Unity issues
speci�cally, but also implementation questions can be posted here as well;
these would be questions speci�c to how to get something working the way
that we want within our game project. For instance, if we were trying to �gure
out how to create an explosion with the Shuriken particle system we could post
a question and get help from someone that would either solve the problem or
guide in the right direction so that we can build our own solution.

Unity also provides a Learn link that serves as a starting page for many
tutorials with the game engine. Long gone are the days of game development
being a cryptic and secretive practice. The developers of Unity want you
to know how to use the tools that are being placed at your �ngertips. The
more that you know about Unity, the more that you can do with Unity. It is
a win–win situation for everyone involved and this tutorial resource can be
very valuable in the learning process. Along with the tutorials, there are also
links to both the Unity manual and the Unity scripting API. While the scripting
API may not be overly relevant to this book, it is of signi�cance to note that
the actions we will be using within PlayMaker are derived directly from the

42

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.1 Top-level site navigation on the Unity 3D website.

scripting API; in fact, they even use the same names. This means that through
learning PlayMaker, we will also become familiar with many aspects of the
scripting API without even knowing that we are learning that content.

The �nal stop on the top-level navigation is the Get Unity or download page.
From this page, we can get the current free version of Unity or a previous
version if for some reason we need an earlier release of the application.
It is also possible to look at the system requirements for the Unity game
engine. It is important to ensure that your system meets these requirements
prior to attempting to install the engine and developing a game with it.
Having a computer that does not meet these speci�cations will create a
very frustrating development experience. There are also links to a license
comparison, release notes, and patch downloads. The license comparison
provides valuable information in helping you to decide when and if you will
need to purchase the Professional version of the software. For the project
that we will be working on in this book and many other game projects as
well, the Personal Edition of Unity has all of the features that will be needed.

Note
As of the release of Unity 5, the free version has been named
the Personal Edition and includes all of the engine features that
were originally available only in the Professional version. These
features include the advanced lighting system, advanced water, and
advanced�shadows along with others. And the Personal Edition is
royalty free until you reach an income level of $100,000 with your
Unity�projects.

Now that we have looked around their website some and ensured that
our computer can handle running Unity, go ahead and download the
newest version of Unity available from their download page and begin the
installation process. While installing Unity, you will be greeted with several
screens asking for clari�cation from you. All of the default options will work,
including the option to install the example projects, although we will not be
looking at that project, during your reading of this book it may prove to be a
useful reference. After Unity has completed installing, a link on your desktop
as well as a start menu shortcut will appear. With the completion of the
installation process, we can launch the Unity development environment and
move forward to the next section.

Note
The version of Unity used during the writing of this book is Unity 5.0.0.
While there will undoubtedly be many exciting new features added
during the 5.x version, all of the content of this book should be
compatible throughout the lifespan of Unity 5.

43

Using Unity and PlayMaker

3.2 Unity’s Interface
When we launch Unity, the screen that will appear is the Project Wizard, the
default version of which is depicted in Figure 3.2. There are two tabs at the
top left and two buttons at the top right within the Project Wizard browser.
Beginning with the tabs to the left, the Projects tab allows us to select a
previously loaded Unity project to launch and continue working with (if you
have downloaded and installed the Example Project then it will be listed
here). The “Get started” tab will present a short video introducing Unity as
well as some of the resources we mentioned in the previous section. With
the Open Other button, located at the top right of the Project Wizard we can
browse to a location where another project is located and open it. Keep in
mind that when opening a project through the Open Other project browser
what you will be pointing Unity toward is the project directory or folder, not
to a speci�c �le. This point can cause some confusion when �rst using Unity
as we are used to using applications to open �les, but with Unity we direct it
to a folder that contains the project that we want to open. This is a point that
we will return to when we discuss using Unity in the next section. The last
button is the New Project button, which will begin the process of creating
a new project. Go ahead and click the New Project button as we currently
do not have a project to open and would like to begin our Sancho Panza
game�project.

Creating a new Unity 3D project is accomplished by selecting the Create New
Project tab and providing the required information for the new project to
be created; the view of this tab is shown in Figure 3.3. When creating a new
project there are two aspects that need to be considered: the �rst is where

44

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.2 Default Project Wizard browser.

the project will be located and the second is what the name of the project
will be. By default, Unity likes to create new projects within the Documents\
Unity Projects (on a Windows machine) folder. This is the default location
that Unity would like to store the projects; in fact, you will �nd the Standard
Assets Example Project folder here. This is a good location for our project, and
it is vital that we remember where it is in case we need to back it up, share it
with another developer or if we plan on utilizing a version control system. Or
we could opt to save our new project in a di�erent location, Unity will always
remember where we have saved this project and it will be an option for us to
open when we launch Unity until we delete or move the project’s folder.

When providing a name for our project, we are also providing the name of
the folder that the project will be stored within. This can be an element of
slight confusion, as we tend to think that the project is an individual �le as we
mentioned earlier, when in actuality the project is a folder that contains all of
the individual �les required for the project. Remember, the project is simply
a folder that is storing all of the individual components that build the game
we are working on; therefore, renaming the folder does not do any damage
to the content of the folder. We cannot rename the folder while Unity is open
and that project is currently loaded though, as that would create a sharing
violation with the �les that are open by Unity. If we did rename the project’s
folder, the next time that we launch Unity it would be necessary to use the
“Open Other” button to browse to the new project folder. By default, Unity
names each new project “New Unity Project” as can be seen in the location
bar for the new project, in Figure 3.3. For now, go ahead and leave it with the
default name and location. We will change this later and reinforce the idea of
projects and folders. Click the “Create project” button and Unity will create

45

Using Unity and PlayMaker

FIG 3.3 The Create New Project dialogue screen.

a new project for us with the folder name location that we speci�ed earlier.
The�“Back” button will return us to the starting point in the Project Wizard.

Video
For a more detailed discussion of the project, folder, and scene
relationship see the “Project Video” from the website content.

While the new project is being created, we will quickly mention the other
options that were presented to us by the Create New Project Wizard. The
�rst is whether we want the project to default to be a 2D or 3D environment.
Since we are going to be building a 3D game, we will leave this set to 3D
(the�default setting as highlighted in red). However, we can switch to 2D at
any point during the game development process, we are not required to start
a brand new project if we to switch to a 2D game, although there may be a
fair amount of asset reworking that may need to be completed. With Unity,
2D can be done in two di�erent approaches: the �rst is a traditional 2D style
game using 2D sprites, and the other is a pseudo 2D in which we will actually
use 3D assets but only present the game from a 2D perspective, which is
a very interesting approach if you consider the possibilities of that route
(for�instance, the ability to toggle from 2D to 3D during game play).

The other setting for us to look at is the Asset Packages importer, which
allows us to include standard assets at the start of our project. For this
particular project, we are not going to import any packages at the beginning;
however, if we wanted to (or knew for certain that we would need certain
packages later in the development process) we could have selected to
import any or all of the assets that are available. In order to view the asset
packages that are available, click the Asset Packages button and a new
selection dialogue window will appear. This dialog includes both standard
asset packages that ship with the Unity development system as well as any
new packages that you purchase through the Asset Store. There are many
methods of getting assets into a project and just because we do not include
a particular package at the creation stage, it does not prevent us from being
able to add that package later. The standard asset packages that ship with
Unity 5 are detailed in Table 3.1.

Depending on the speed of your machine, we should not have to wait too
long for the full Unity environment to appear with a brand new project
ready for us to start working on. At �rst glance, the Unity interface may seem
overwhelming because it appears so empty with no indication of what to do
next. However, that is also one of the things that we particularly like about
Unity’s interface is its simplicity. The interface is not cluttered with unneeded
icons and buttons, and everything that we do need is readily accessible. Let’s
begin with the generic Unity interface as depicted in Figure 3.4.

Section 1 of Figure 3.4, shows the Scene Editor pane within Unity. It is
within this pane that we are given a 3D view of the game world that we

46

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

are�creating. As you can tell, there is nothing in the current world except
for some lines, an oddly shaped white thing, some type of yellow-looking
sun thing, and a kind of box with colored cones coming out of it in the top
right corner. The oddly shaped white thing is the default camera object
that is always added to a new scene, within Unity we need a camera in
order to be able to see the game world when running the game. We can
select this game object by left-clicking on it within the Scene Editor, or by
selecting it from the Hierarchy panel (which we will discuss shortly with
Section 4 in Figure 3.4). The white box in the top right corner is a quick

47

Using Unity and PlayMaker

TABLE 3.1 Standard Asset Packages within Unity 5

2D This package includes many assets that could be used in the creation of a 2D
game. The content includes a fully animated sprite, RobotBoy, which could be
used as a character in your game.

Cameras Includes several di�erent camera controller rigs that are ready to be dropped
into your project, although they may require tweaking to get the exact
behavior you are after.

Characters A collection of character controller systems to incorporate into your project. The
controllers also include graphics, animations, and audio. However these may
need to be changed for your speci�c project.

CrossPlatformInput Scripts to provide input functionality in di�erent platforms, this package is also
included in many of the other packages where input is needed.

E�ects Scripts and shaders to provide special lighting e�ects to the environments that
we create. These e�ects range from new materials to light shafts and light �ares.

Environment Contains components that could be used in the construction of terrains and
outdoor environments. Sample trees are included for SpeedTree as well as
textures to use as bases for terrain materials.

Fonts Four open-source sans serif fonts that we can use including bold, light, regular,
and a semi-bold.

ParticleSystems Standard particle systems for inclusion in your project ranging from explosions
to dust storms. These have been created with the Shuriken particle system
making them a valuable resource for understanding how to create our own
particle e�ects.

PhysicsMaterials Unity utilizes physics materials to de�ne the friction and bounce when two
game objects collide. This package has several di�erent materials, including
rubber and wood, as well as di�erent friction types to quickly adjust the
physics collision properties of our game objects.

Prototyping Various assets and scripts that could be utilized to quickly prototype a game
concept to test for playability and provide a fast demo. Prototyping game ideas
allows us to test the mechanics of a game idea prior to investing a large
amount of time in the creation of graphical content as this is very useful and
oftentimes overlooked.

Utility Scripts and sprites that could fall into a miscellaneous category, such as a
FollowTarget or FPSCounter script. This collection is included as a part of most
of the other packages as well.

Vehicles An airplane and car control system including audio and animation can serve as a
useful starting point for creating your own vehicle control system.

snap tool that we can use to align the Scene Editor camera along any of
the axis. We can also quickly toggle between isometric and perspective
modes by left-clicking on the white box in the middle. Go ahead and
experiment a little by left-clicking the cones protruding from the central
box to see how they change your view within the Scene Editor. The lines
provide us with a grid system that we may use for positioning objects
within the game world. This grid display can be toggled on and off
from the Gizmos drop-down menu along the top of the Scene Editor
window, as depicted in Figure 3.5. Finally, the small sun object is a default
directional light that Unity adds to our scene for us. Unity includes four
different types of light objects, the�directional light is one that is intended
to mimic the lighting provided�by the sun in the real world. It will cast
light in one direction toward our environment. The other three types
of lights will be discussed when we�get to Chapter 7, on building the
environment for our game�project.

Note
The view of the scene in the Scene Editor is NOT the same as the way
that the game will look through the game camera(s). Moving your view
around within the Scene Editor will not have any impact on the player’s
view of the game during game play.

48

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.4 The default Unity layout and interface.

FIG 3.5 The con�guration options for the Scene Editor.

There are times when it will be necessary to view a scene in di�erent styles
or to only view certain parts of the scene. These con�gurations are all
available within the options along the top toolbar of the Scene Editor (see
Figure�3.5). You�can remove the grid lines by left-clicking the Gizmos drop-
down dialogue and toggling the Show Grid on or o�. While you are there,
you may notice that there is a long list of other things that can be turned on
or o�. We are not going to go over each one at this time, but this is a nice list
to be aware�of. Continuing from right to left, after the Gizmos drop down is
a similar selection system for the E�ects that may be within the scene. The
E�ects drop down allows us to disable skyboxes, fog, �ares, and animated
materials. However, disabling these graphical e�ects is only disabling them in
the Scene Editor not in the game itself.

Note
A scene within Unity is the same as a level within a game, so when we
are�referring to a speci�c scene we are referring to the level of the game
as well.

The next two icons allow us to toggle the display of sound on or o� within
the Scene Editor and to toggle between the lighting rig that we have
built within the scene and the default environment lighting of Unity. The
di�erence in the lighting can make a huge di�erence while you are working
on your levels. There are many times when we are trying to get a certain
feeling or mood with the lighting that we build for the scenes; however, once
we have achieved the e�ect that we are after the scene is now too dark or
too heavily colored for us to be able to easily discern the placement of game
objects. It is for this reason that it may be best to leave the lighting of your
levels until after the rest has been completed, but even then there are times
that we need to return to the scene and tweak something within it. Toggling
to the default Unity lighting can make it a lot easier to see what we are
working on.

Next to the Lighting toggle is the ability to quickly transition between
2D and 3D mode. So, if at some point during our game development
project, we decide that we would like to switch to a 2D system for the
game we can simply click that button and change our scene view to the
orthographic style of a 2D game. However, doing this does not convert
the game itself to a 2D game (or 3D) or even change the way that the
game appears during game play, we are only changing the way that it
appears within the Scene Editor itself. If you go ahead and click the 2D
button, you will notice that the Scene Editor rotates to an orthographic
view and that the quick movement cube disappears, as there is no
multiple axis for us to snap the camera to on a 2D orthographic view, the
view is only a perpendicular view toward the game world. Go ahead and
switch back to 3D now so we can continue with the rest of the settings for
the Scene Editor.

49

Using Unity and PlayMaker

The next drop-down menu item is labeled “Shaded” and can be used to
modify how the scene is displayed to us. The �rst three options deal directly
with the draw mode and can be either textured, wireframe, or both. With
shaded selected, we essentially see the scene as it will appear while the game
is running, within reason. Wireframe mode, on the other hand, will display
the edges of the meshes without any texturing on the surfaces (edges are the
individual lines within a 3D mesh that connect points, called vertices). This
can be especially bene�cial when we are trying to get objects to line up with
each other. The default shaded mode is perhaps the most commonly used
of these options. The options below these are more useful when we get to
optimizing our game project.

The �nal thing to mention in regard to the Scene Editor is the tab selector
along the top of it, which was previously depicted in Figure 3.5. There are
two tabs present, the Scene view and the Game view. The Scene view is the
one that we have been working with thus far, but we can select the Game
view tab to see the game from the player’s perspective; remember that
this perspective is most likely not the same perspective as shown in the
Scene view. This is not a useful tab unless the game is running or we are
constructing interface systems, as we cannot modify anything from within
this view.

At this point, we need to mention that all the panels within Unity are
dockable. This means that by clicking with the left mouse button and holding
the mouse button down on the tab for the panel, we can grab the panel
and move it to wherever we want it to be. For instance, we could grab the
Game view tab and move that panel somewhere else. Or, as in the example
shown in Figure 3.6, we can put the Game view side by side with the Scene
view. Having multiple monitors also allows us to move any of these panels
to one of the other screens. Practice moving these panels around a bit to
get the hang of it, if your display gets really messed up, you can reset it back

50

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.6 Side-by-side display of Scene and Game views.

to default by clicking the Layout drop-down list in the top right corner and
selecting “Revert Factory Settings.”

Section 2 in Figure 3.4, is the Inspector panel. This panel is used to view and
modify the properties of game objects. Anything that is within a scene is
referred to as a Game Object by Unity. Currently, the Inspector panel is blank;
however, if we click the directional light within the Scene Editor, the Inspector
will change to show the properties of that speci�c object. We will go into
more detail about the Inspector panel in the following section on Using
Unity. At this point, just keep in mind that the Inspector panel can be used
to modify a game object’s properties and also to add new components to
the object. A component can be anything from a behavior script to a Collider
to an Audio Source. All game objects have a Transform component which
governs the position, rotation, and scale of the object. If the game object did
not have this Transform component, then it would not exist within the scene.

The next section to look at is section 3, which is our Project panel. The Project
panel contains a list of all of the assets that are a part of the current project.
This view is the exact same view that we would use, if we were using a �le
explorer to browse the folder that we created for this project during the
creation stage earlier. Anything added to or removed from the Project panel
is also added to or removed from the project folder itself. When we want to
add an asset to a scene, we can drag it from the Project panel and drop it into
our scene, at which point it will be added to the Hierarchy panel.

The Hierarchy panel is found in Section 4 of Figure 3.4. Within this panel,
we will �nd a list of all the game objects that are currently within our scene,
be aware of the distinction between the scene and the project. Notice that
there are two objects listed: Main Camera and Directional Light, the same
two objects that we discussed when looking at the Scene Editor panel. We
begin to recognize that information is presented to us in multiple fashions
by the Unity editor and that the information is consistent. Earlier, we selected
the Directional Light from the Scene Editor in order to view the properties
of the object, this time select the Main Camera from within the Hierarchy
panel. Notice that the Inspector panel has changed to show the properties
for the selected camera object. Also, notice that within the Scene Editor the
transform gizmo (the red, green, and blue arrows) has moved to now be
centered on the camera object there as well. One �nal point on the Hierarchy
Panel, in the top left corner of it, is there is a drop-down menu labeled
Create. Clicking this allows us to create new game objects to add to our scene
(they will not be added to the Project panel, however, but we will discuss
that in more detail later when looking into Prefabs). The options available
in the Create drop-down menu are the exact same options available in the
GameObject menu bar option along the top of the Unity window.

The last section to look at is the Toolbar, number 5 in Figure 3.4. The toolbar
begins on the left-hand side with the transform gizmo toggle buttons. Earlier
we mentioned that all Game Objects within a scene must have a Transform
component and that the Transform component controls the position,
rotation, and scale of the object. These buttons allow us to switch the

51

Using Unity and PlayMaker

transform gizmo between these di�erent modes. The hand icon allows us to
pan the view in the scene editor. The next two buttons are for the placement
of the transform gizmo (either the center of the object or the pivot point of
the object) and the alignment of the transform gizmo (aligned to the game
world or the local axis of the game object itself).

The middle of the Toolbar section is dominated by three buttons: Play,
Pause, and Step. These control the executing of our game. The Play button
will start the game running and the Pause button allows us to pause it,
which can be extremely useful for making adjustments to properties of
Game Objects. To stop the game, while it is running, simply click the play
button for a second time. The Step button will allow us to advance the game
forward one refresh cycle. At the far right of the toolbar are two drop-down
menus. The Layers menu allows us to specify which layers are visible within
the Scene Editor. We can assign Game Objects to di�erent layers, you can
notice this at the top right of the Inspector panel for a selected object, and
then toggle the visibility of those layers on or o�. The Layout drop down is
to select prede�ned layout con�gurations or to return to the factory default
setting as was discussed earlier. It is also possible to save our current layout
from this menu.

3.3 Using Unity
It is now time to play around a little with Unity and to put what we just
learned about its interface to use. We will create a very simple scene to get
used to placing objects and using the di�erent transform gizmos. We will also
utilize the Inspector panel to make some changes and additions to our game
objects within our scene. This scene will go on to be our test development
scene for the character system of the next chapter.

The �rst thing that we will add to our scene will be a cube that we will
use�as�a�ground object for our game world. Select GameObject � 3D�Object��
Cube�from the menu bar at the top of the Unity editor. A Cube�Object will
appear in both the Scene Editor view and the Hierarchy view�and the Inspector
panel will populate with the properties of this Cube�Object. Finish creating the
Ground Object by completing the following�steps:

 1. Position the object at the center of the world by changing the
transform Position values to 0, 0, 0.

 a. This can be done by moving the arrows within the Scene Editor
or by entering the values directly within the X, Y, Z boxes of the
Position part of the Transform component.

 2. Change the scaling of the object so that it will be a good size for the
ground. Set the Scale values to 30, 1, 30.

 a. The Y value of 1 indicates the “height” of the ground, this can be any
value that we want, however, there is no need to make it particularly
thick as the player should always be on top of it anyway.

52

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

We now have an object that can serve as the ground, at least temporarily.
Now we will make some housekeeping changes to this object that will prove
to be a bene�cial habit to get into. The �rst is to change its name. While
“Cube” is an adequate name for the object in a small testing scene such as
this, if we were to add 30 more cubes to the scene, which cube would be
which? It is a very good idea to get into the habit of naming your objects
something relevant so that while reading the Hierarchy panel you will be
able to quickly know which object is which. There are two methods that we
can use to change this name. The �rst is to select the Cube object within
the Hierarchy panel and press F2 on our keyboard, now we can change the
name from Cube to something more descriptive such as Ground. The other
approach to changing the name is to click on the text box with the name at
the top of the Inspector panel and to change it there.

Directly beneath the name of the object in the Inspector panel are
drop-down lists for Tag and Layer. The Layer list is used to specify what
layer we want an object to be a member of and can then make that layer
visible or not as we discussed earlier. The Tag list is used to give the object
a tag that can be referenced from within a script to access that object,
which will be very important later, especially for collisions between
Game Objects. For instance, we may want the player to die or be hurt
when impacted by an arrow. To accomplish this, in broad terms, when
the collision occurs between the two objects we would have the player
object check the tag of what it collided with and if that tag were “arrow”
(for�instance) we would cause damage to the player, but a different
amount of damage than if the tag were “racing bus.” If we select either
the Tag or the Layer we can see the default options that are available,
while it is fine to use these, it will not take long before we need others or
more descriptive ones. As a result, we are going to go ahead and create
both a custom layer and a custom tag.

Select the Layer drop-down list followed by the Add Layer option. The
Inspector panel now changes to depict the list of layers within our
current project. The built in layers are listed at the top and are greyed out,
indicating that they cannot be modi�ed. Select the text box of the �rst
available layer and enter a name for this layer; in this case, we will name
this new layer “base.” To return to the properties of the Ground object that
we were working with select it in either the Scene editor or the Hierarchy
view. Generally, we �nd it easier to select objects from the Hierarchy panel
as it prevents accidental clicks on other things. With that object selected,
we can once again choose the Layer drop-down list and this time our
new layer is available for us to select. Repeat this process for the tag, you
can use the same name “base” although we will be tagging this object as
“ground.” This tag will be used later to indicate objects that the player can
walk on. This time when you select Add Tag, you are presented with the
view as depicted in Figure 3.7 below. Select the plus sign in the bottom
right to add a new tag to the list of custom tags and provide the name for
this tag. Do not forget to return to the game object and change its tag
within the Inspector.

53

Using Unity and PlayMaker

Now that we have looked at the top two sections of the Inspector panel for
this and all other Game Objects, we will go through the remainder of the
standard components for many Game Objects. The section immediately
below the Transform component is the Mesh Filter part. This component
de�nes what mesh, or 3D shape, is drawn as a representation of this
particular Game Object. Currently, the selected Mesh is a Cube, but if we
click the circle icon to the right of the text box, we will get a browser window
allowing us to select any other mesh currently included in our project, of
which there are not many only the default meshes. We can go ahead and
change this mesh from a cube to a sphere, for instance, and see how that
changes what is displayed in the scene editor, this change can be seen in
Figure 3.8. Notice that the sphere mesh does not exactly look like a sphere.
This is because the sphere mesh is being placed within the transform
properties that we have de�ned, including the scale settings. Now we have
a squished sphere where we did have a cube. If we wanted the sphere to
appear proper again, we could just change our scale settings back to a
uniform value, such as 30, 30,�30. But we actually do not want a sphere, so go
ahead and return the mesh back to the cube that it was.

The next section in the Inspector panel de�nes the Collider component for
the Game Object. Colliders are an important element of every Game Object
and have several interesting parts to them. For now, we are going to gloss
over these, but they will be reinforced in upcoming topics. A box collider
has been applied to this particular object and Box Colliders are the cheapest
of the available colliders. By cheap, we are referring to the cost of using the
collider from the perspective of the CPU or GPU depending on the system.
A box collider, as depicted in Figure 3.9, is comprised of six sides. When
calculating collisions, this means that the CPU (or GPU depending) only has to
check each of the six sides to know if a collision has occurred. In comparison,
a sphere collider, also depicted in Figure 3.9, contains eight surfaces that
must be checked for collisions. The fewer surfaces that we are checking for

54

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.7 The new tag list display in the Inspector panel.

55

Using Unity and PlayMaker

FIG 3.8 The Cube Mesh has been changed to a Sphere Mesh for the Ground Game Object.

FIG 3.9 A sphere collider inside of a box collider.

collisions, the quicker that we can cycle through all of the colliders within
our scene, and therefore, the faster and smoother the game will run. This
is a key concept to keep in mind when we are working with Game Objects
and assigning colliders to them and we will return to this in more detail in
upcoming chapters.

Within the options of a collider component, we can specify a Physics Material
to de�ne the friction and bounce when other objects collide with it. There is
also a check box to change the collider into a trigger volume or back to a rigid
collider. Triggers are a unique type of collider in that they allow us to detect
when a collision has occurred without preventing the colliding object from
passing through. A standard collider will not allow the objects to pass through
each other, consider placing your hand against a concrete wall. Your hand
has collided with the wall, and the two objects are now resting against each
other. On the other hand, a trigger will allow us to detect that a collision has
occurred while still allowing the object to pass through the area. Consider the
motion detection systems for automatic doors at various stores. The motion
detector gets triggered when you collide with its range of detection, but you
are still able to pass through; otherwise, you would be stuck trying to get
to the opened door. Triggers and colliders are used extensively throughout
game development, and there will be a need for both types at various times.

We can also modify the center position of the collider and its size. It may not
be immediately obvious why we would want to do such things, but consider
the following example. We have a character that can run around in our game
world. We give it a collider to know when it hits walls or when bad things
hit it. However, we would also like to know when the character’s feet hit the
ground during each step. We can do this by adding colliders to the character
and positioning them where the feet are and changing the size to only
include the foot itself. Finally, if we turn those foot colliders into triggers, then
we will know exactly when each foot strikes the ground and can then play a
footstep audio e�ect or perhaps a little pu� of dust particle e�ect.

Directly below the box collider component is the Mesh Renderer component.
Throughout this book, we will generally ignore this component as there is not
much reason to change away from the default options. However, the check box
immediately to the left of Mesh Renderer will allow us to turn the renderer on
or o� (there is a check box for the box collider as well). By turning the renderer
o�, we are making the object invisible. There are many times during the course
of a game that we want something to be invisible for various reasons including
making a cube invisible but allowing its trigger collider to still exist within the
game world. All of these properties can be accessed when the game is running
through behavior scripts which we will develop within PlayMaker.

The last component we are going to look at, for now, is the Material
component. All Game Objects have a Material component assigned to them.
Materials, or shaders as they are also referred to, de�ne how light reacts when
it hits the surface of the object. That is to say, the material de�nes how the
surface of the object looks within the game world. There are many fascinating
things that we can do with materials, however an in depth exploration of

56

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

shaders is not an introductory topic. For the moment, we will say that materials
are comprised of textures (or solid colors) and that a mathematical algorithm is
applied to these textures to determine how the light of the game world should
behave when hitting these surfaces. Textures are image �les and can be either
photographs, drawn images, or computer generated images.

Unity 5 introduces the new physically based shading system that much more
closely mimics the way that light interacts within the real world. This, in turn,
makes our game objects look better and more realistic. To take a very quick
look at this shading system, we are going to create a new material to apply to
our ground object. In the Project panel, click the drop-down menu labeled
Create and select Folder from the top of the list. While this is not a material,
it is very important that we keep our project as organized as we can, this will
make it easier for us to �nd things as the project grows during the natural
development cycle. This new folder, name it Materials; this is where we will
store all of the custom materials that we create for use in our game. Double-
click the Materials folder, to make sure that we are within that newly created
folder, and select the Create drop down again, this time choose Material.
We�will name this new material ground. Figure 3.10 depicts the default
properties of a standard material.

57

Using Unity and PlayMaker

FIG 3.10 Properties for a standard shader in Unity.

We are not going to de�ne each of these pieces at this time, rather we are
going to create a simple green material to serve as our ground surface. Under
the main maps section, the �rst item listed is Albedo. This is essentially the
traditional Di�use channel, not quite but for our purposes, we can leave it at
that. Albedo de�nes how the surface of the object would appear in standard
di�use lighting with no shadowing details on it at all. Di�use lighting is
dependent on the direction of the light, this means that parts of the object’s
surface that are facing the lighting source will appear brighter than will the
parts facing away from the light source. This is a mimic of how surfaces appear
in the real world. There are other lighting models; however, such as ambient
lighting which applies light equally to all surfaces of an object, regardless of
whether the surface is facing the light source or not. Therefore, what we put
in the Albedo channel is going to de�ne how the surface of this object looks
normally. We have two options here, the �rst is to apply a texture map to this
channel and the second is to apply a color to the channel. For this example,
we are going to apply a greenish color to this channel by selecting the white
box next to Albedo and grabbing the color that we want within the color
swatches. Select any color that you like, our selection is shown in Figure 3.11.
We will �nish this material by dragging it into the scene editor and dropping it
onto our ground object thereby applying the material to that object.

58

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.11 The green shade is selected for the Albedo channel of the ground material.

Now that we have an interesting game object out in our world, we will
look into navigating around our scene. Table 3.2 depicts the standard
navigation�methods. It is strongly recommended that you go ahead and
practice moving around your scene with these combinations to become
familiar with them. An important one to note the distinction is the ALT key
plus the left mouse button. If no game object is selected, then this will
behave the same as the right mouse button action; however, if a game object
is selected then the behavior is quite di�erent and there will be many times
that you will need exactly this behavior as you are working with your scene.

Now that we have a basic scene constructed, go ahead and add some more
objects to it. We will use these objects to test standard collisions as well as
jumping when we build our character in the next chapter. For our version,
we are going to add some more cubes to the scene with various scale factors
and place them near each other using the techniques that we have learned
thus far. We will also go ahead and add new materials to these objects to
di�erentiate them from the ground itself. However, the layer and tag for
these new cubes will both be set to ground and base just as we did for our
actual ground object. The �nal version of our scene is depicted in Figure�3.12.
Before we leave this section, we need to make sure to save our scene so
that we will be able to access it again later. Create a new folder in the Assets
section of our Project (not in the Materials sub-folder of the project). This
new folder will be called Scenes, and we will save all of our scenes within
this folder to make them easier to �nd. Finally, save the scene by selecting
File from the menu bar and Save Scene As. Browse to the folder that we just
created and name the scene something like “test scene” as this will serve as a
testing platform for many of the things that we build.

Select the main camera in the scene and notice that a new window appears
in the bottom right-hand corner of the Scene editor pane. This window is
displaying what the camera can see and, consequently, what the player can
see since this is the only camera in the scene. The main camera will default
to the player’s view when the game is run, go ahead, and click the Play
button in the toolbar to verify that what you see when the game is running
is the same as what you see through the preview pane of the main camera.

59

Using Unity and PlayMaker

TABLE 3.2 Navigating a Scene within Unity

Press and hold middle mouse button or ALT
key plus the middle mouse button

Pan the camera around the scene. This is not moving
the game camera or changing how the game actually
looks, this is only moving yourself around the scene
to have a better view.

Press and hold the right mouse button or ALT
key plus the left mouse button

Rotate the camera around the scene. This is very useful
in conjunction with panning so that you can move
around objects that may be blocking your view.

Scroll middle mouse button or ALT key plus
the right mouse button

Zoom in and out of the scene.

When a game object is selected in the scene
editor, ALT key plus left mouse button

Rotate around the selected object as opposed to
rotating the camera view from where it is.

Practice�moving objects around some more by moving the camera in such a
way that you have a better view of the boxes that you have placed into your
scene. It may be necessary to use the rotation tool to rotate your camera to
get your camera in a view that you are happy with.

Select the directional light and notice the direction of the movement gizmo
arrows on the default setting of local. Up, the green or Y-axis, is not actually
pointing up, but rather in a diagonal kind of direction. This is caused by the
rotation of this directional light. Notice in the Rotation settings for this object
that it has been rotated 50° on the X-axis and –30° on the Y-axis. As a result
of�this rotation, the direction that the light thinks is up, its local alignment, is
not the same direction that the world thinks is up. Therefore, if we wanted
to pull this light straight up to get it further from the surface of the ground,
we would have some di�culty moving it in the exact direction we want.
However, if we were to change from Local to Global, by clicking the button
in the toolbar section, the alignment of our movement gizmo now matches
that of the world and not the object itself, making it much easier to move the
object straight up and away from the surface of the ground. There are times
when we will want to use the global alignment, and other times when the
local alignment will be the best to provide what we need.

3.4 Installing PlayMaker
PlayMaker is a visual scripting interface developed by Hutong Games. The
idea behind PlayMaker is to allow the development of games with complex
behaviors and interactions without having to spend a tremendous amount
of time developing the programming skills and sophistication to script
those behaviors in either javascript or C#. In order to get the functionality
out of your projects as you envisioned them, you will need to create this
functionality, it is not sitting on the shelf just waiting for you to rename it and

60

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.12 A basic testing scene for our character, nothing fancy.

use it in your game. Through the use of PlayMaker, we can focus on the logical
underpinning of programming without getting bogged down in the syntax
of speci�c languages. This is an exciting possibility for us as we embark on
our own game development projects, as the skills that we learn in PlayMaker
are the same logical skills that we will need in order to master a programming
language. To add even more bene�t, the actions that we will be using within
PlayMaker are derived directly from the Unity API (Application Programming
Interface). What this means is that we are also learning our way around
the standard methods of the Unity API, while we are learning the logical
underpinnings required to become expert game programmers.

There are two di�erent methods we can use in order to obtain your own
copy of PlayMaker. The �rst is to utilize the Unity asset store mentioned in the
previous section in which case once we have bought the package it will now
be available for adding to our future projects through the package import
tools within Unity. The other available option for getting PlayMaker is directly
from their website: http://hutonggames.com/. Whether you purchase the
plugin through the asset store or directly from the developer’s website, you
will have a Unity package that can now be imported into your projects. It is
strongly recommended that you visit their website and especially take a look
at the forums that they provide (http://hutonggames.com/playmakerforum/
index.php). These forums are a wonderful resource for �nding answers to
questions that you may have. While it is our hope that this book will answer
nearly all of the questions that you will have in regards to using PlayMaker, the
reality is that you will at some point in time try to do something not directly
covered within this book. These forums can provide an excellent resource
for you to ask questions and to get help with resolving any problems that
you may encounter. These forums are speci�c for PlayMaker; Unity speci�c
questions should be addressed to the Unity forums mentioned�earlier.

Note
As of this writing, the current release version of PlayMaker is 1.7.8.
However, throughout this book we will be using the 1.8.0 Beta (RC20).
This will allow the techniques in the book to be applicable to the �rst
release version of PlayMaker for Unity 5, which will be 1.8.0. While
there may be some minor changes between the current Beta and the
�nal release of PlayMaker, these changes should only add features and
stability, not remove anything we do here.

Installing PlayMaker into our project is di�erent from installing other
applications in the sense that it is not a stand-alone program that we can run
independently. What this means is that the process of “installing” PlayMaker
is actually the process of importing the PlayMaker package into a project that
we are working on. There are two methods that we can use to import the
PlayMaker package into our current project. For the �rst method, we have to
have purchased PlayMaker through the Unity Asset store in which case the

61

Using Unity and PlayMaker

package is added to the Standard Packages that we can select from to import
into our project. To access these packages, once a project is loaded select
Assets from the menu bar followed by Import Package. The pop up selection
list should include PlayMaker (if you had purchased it through the Asset
Store as mentioned), if the PlayMaker package is not listed, select the Custom
Package option and browse to the location where the PlayMaker package
is stored on your computer. The other method of importing a package into
a Unity project is to drag the package (a. unitypackage �le) from whatever
folder it is currently located in and drop it into the Project Pane. Whichever
approach is selected, a dialogue will appear after the package �le has been
decompressed, as seen in Figure 3.13, allowing us to select which parts of the
package that we would like to import. As a general rule, we want to import all
of the pieces of a package; however, there will be times during a project when
we might only want to import a small portion of a package, a speci�c model or
audio �le for example. We will need all of the parts of the PlayMaker package,
so click the Import button to bring the package into our current project.

Note
With PlayMaker 1.8.0, as used in this text, an Update Warning dialogue
box that will appear. PlayMaker 1.8.0 is compatible with both Unity
4 and Unity 5; however, there are some functions in Unity 4 that
were removed in Unity 5, hence the warning. Unity will convert the
functions to the newer versions, and there should not be any issues.

62

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.13 The Importing Package dialogue window.

3.5 PlayMaker’s Interface
The PlayMaker interface is as streamlined and easy to use as is Unity itself.
To begin, adding PlayMaker to our project only made two immediately
noticeable changes to our project. The �rst is that some new folders have
been added to the Project Pane. These folders are required for various
PlayMaker functionalities, a breakdown of the contents may be found in
Table�3.3. The second change is a subtle change to the menu bar, a new item
has been added titled PlayMaker. Listed within the PlayMaker menu item
is the PlayMaker Editor, this is the window from which we will do the vast
majority of our work with PlayMaker.

The first time that the PlayMaker editor is launched, it will open with a
“Welcome to PlayMaker” dialogue providing quick links to sample scenes,
tutorial videos, online documentation, and the forums. These are all very
valuable resources for us to look at, in the case of the sample scenes,
or for us to find help with as we discussed earlier with the forums and
documentation. Once past the welcoming screen, we will be confronted
with the PlayMaker editor as depicted in Figure 3.14. This screen is divided
into two distinct panels: the state machine view and the properties
panels. The state machine view, the left-hand portion of the window,
is where we can edit the overall logic of our state machine in a visual
interface. The properties portion allows us to adjust the properties of our
state machine, the individual states of the machine, the events within the
state machine, and the variables available to the state machine. This is
somewhat analogous to the Inspector pane within the Unity editor and
we will dive into more detail with these views shortly. In order to continue
working with PlayMaker, we will need to select a GameObject from the
current scene.

Events in a state machine de�ne what causes a transition from one state to
another. A simplistic example would be that I am currently in the state of

63

Using Unity and PlayMaker

TABLE 3.3 Folder Structure of the PlayMaker Package

Gizmos The icons that will appear throughout the Unity editor when necessary to display.
This�includes icons that will appear directly within the Scene Editor and the
Inspector�Pane.

iTween iTween is an extension for the Unity editor that adds in the construction of animation
through the use of interpolation. More information is available at: http://itween.
pixelplacement.com/index.php

Plugins This folder contains any plugins that are created or will be created for PlayMaker.
Version�1.7.8 includes plugins for both the WebGL and Windows Phone 8
deployments. It is expected that the release version of 1.8.0 will include this
as�well.�Expect a plugin for the new networking system UNET at some point
during�the 5.x life.

PlayMaker This folder contains the necessary C# scripts that are the backbone of PlayMaker.
It�will not be necessary for us to do anything with this folder, however, if we lose it
we will also lose PlayMaker within our project.

being alive; however, as soon as I am crushed underneath a massive asteroid
that strikes the earth (a rather catastrophic event not only for me personally
but potentially for everyone else as well) I will cease being in the state of
being alive and move over to the state of being dead. The events tab in the
PlayMaker editor will allow us to create our own custom events, such as the
asteroid striking the earth, to use within the currently active state machine.
Other state machines do not have access to the states or the events of
di�erent state machines; they are all encapsulated inside of themselves.

When we create scripts we oftentimes need to store data for use at a later
point in time either as a comparison check for something or as a setting for
an object. Data are stored within variables, which we can manage from the
variables tab within the PlayMaker editor. We have two types of variables
that we can create: global and local. Global variables are ones that are visible
and available to all state machines within a scene. At �rst glance this may
seem like a good idea, for instance, making the player’s score available to
everything. However, this also means that any state can modify the value
stored within the global variable, which in turn may lead to very di�cult to
�nd errors and odd behavior within the FINISHED scene. For instance, our
player’s score may be jumping by 10 points at various times during game play
and we are not entirely certain why as all of the state machines have access
to that variable. Therefore, to �nd the problem, we will need to look through
each state machine within our scene until we �nd the one that is changing
our player’s score by 10. As it turns out, we can do the same thing with local
variables it is just far more di�cult, which in turns makes them safer to use.
Local variables are only available within the state machine that they were
created in. It is possible to make the values of these variables visible to

64

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.14 The default PlayMaker editor screen.

other state machines; however, doing so will require the use of more action
commands, thereby making it more di�cult for us to accidently change the
value of the variable. We will be returning to variables in the next chapter.

State machines are scripted behaviors that can only be applied to Game
Objects; the state machines do not exist in a vacuum they are an integral part
of the object that we want to be able to give commands too. Go ahead and
click on one of the blocks from the current test scene and notice how the
PlayMaker editor changes. The text is no longer directing us to select a Game
Object, rather we can now right-click and add a state machine to the selected
object. But, before we do that, we need to de�ne state machines in more
detail than we have thus far.

3.6 State Machines
State machines provide a method for us to visually design a script. There
are several techniques that software engineers use to diagram a solution
to a system, or program, and state machines are one of the tools that they
have available. Figure 3.15 depicts the concept of a state machine with
the simpli�ed example of starting a car. State machines are comprised of
three key elements: a state, a sequence of actions, and transitions. A state
is depicted by the white boxes in Figure 3.15, and you can see that we have
two states in this machine; one is labeled “State 1” and the other “State 2.”
Labeling states is a very important step, as it allows us to look at the state
and guesstimate what function it may serve; in the case of this example, the
labels currently selected are bad choices as in order to know what either
state is doing we need to read through the list of actions and determine what
function they perform. It may seem as though reading through the actions
is a good approach to determining what a state does; however, as the list of
actions within a state grows in detail and intricacy it becomes more di�cult
to easily detect why the state is there and what it does.

Actions, as they have been referred to above, refer to a list of things that the
state does. This list will contain speci�c actions to be performed and they
are performed sequentially. By this we mean that once we enter a state, the
actions are performed from top to bottom and in order. So in the example
of “State 1” from Figure 3.15, the �rst thing to be done when entering this
state is to get in the car. The key is not put into the ignition until after
we have gotten into the car. At this point that may seem like an obvious
distinction, but as we move forward and build more complex logic with
PlayMaker we will need to keep this in mind and remember that the actions
are performed from top down. This will extend to some special actions,

65

Using Unity and PlayMaker

State 2
Start car

State 1
Get in car
Put key in ignition

Turn key

FIG 3.15 Example of a state machine.

conditional checks, which may cause us to leave the state that we are in.
PlayMaker provides a list of actions that we can add to each state that we
create. This list is directly derived from the Unity API, what this means is
that if Unity can do it then so can PlayMaker. The trick, for us, will be to
determine which action it is that we need at which point in time. But we will
look at some tips that we can use to help us make the correct decisions, or
at least good guesses.

The last core component of a state machine is a transition. The transition
is depicted in Figure 3.15 as a line ending with an arrow head. The line and
arrow indicate which state we are coming from and which state we are going
to. While it is possible for a single state to have multiple transitions going
to di�erent states, consider the slightly more complex state machine of
Figure 3.16, it is not possible for a single transition to go to multiple states.
Each transition has a speci�c starting and ending state. The label above the
transition indicates what event causes the transition to occur. In the case of
Figure 3.15, the event that causes us to leave “State 1” and go to “State 2,”
where we happen to perform the action of starting the car, is to turn the key
after it has been placed into the ignition.

State machines can be constructed directly from our plain English list of
things that we want something to do. Consider the following list of things
that I want to happen in order to start a car:

Get into the car and put the key into the ignition. When you turn the
key, go ahead and start the car.

66

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

State 3
Put key in ignition

State 2
Turn the key
Start the car

State 4
Put in drive
Drive away

If car is running

FINISHED

Key not in ignition

If key in ignition
State 1
Get in car

FINISHED

FIG 3.16 A more complex version of the starting car state machine.

We have added some color coding to the text so that you can more easily
visualize the distinctions in our plain English instructions. This cannot be
stressed enough, before you ever begin to write any code or develop a state
machine, you must take a few minutes to write down what you want to
happen. Make sure that you can explain to yourself, in your language, what
you want the computer to do before you ever attempt to tell the computer
in its language what you want it to do. In this example, the actions have been
color-coded with blue. So, we can easily see that at one point in time we want
to perform the actions of getting into the car and inserting the key into the
ignition. These actions can be performed at the same time. Now, by that we
do not mean simultaneously as one would expect, but rather that these two
actions can be performed sequentially with each other and do not require
anything else to occur. Consider the example of the action “start the�car”;
in order to perform that action, something else has to have occurred �rst,
speci�cally the red-colored “turn the key.” As a general rule, if your list of
actions include the words “when” or “if,” you have found a transitional event.
Another indicator of a transitional event can be seen in the plain English
version of our more complex example as follows:

Get into the car. If the key is already in the ignition go ahead and turn
the key to start the car. Otherwise, put the key into the ignition and then
turn the key to start the car. But, if the car is already running, put it into
drive and drive away.

We still have some very obvious actions (blue text), to perform, such as: “get
into the car.” But the events that cause us to transition from one state to
another become a little more fuzzy as we start to introduce conditions, the “if”
statements. The purpose of conditions is to control the �ow of the actions. For
instance, if the key is already in the ignition then not only is there no point in
putting the key into the ignition, but it is actually impossible to do so (without
removing the key �rst). Remember, in an earlier discussion, we mentioned
that the actions are performed within a state sequentially from top to bottom.
Well, if we want to short circuit this behavior and only perform the remaining
list of actions under certain conditions, then we can incorporate a conditional
check that will cause the execution to switch to another state if the speci�ed
condition is met. Writing in plain English, as has been done in the current
examples, is not always the most bene�cial approach however. As a general
rule, I will create a bulleted list of what needs to happen and from that list, I
will look for those hot words which will tell me where the actions are and what
the events are that cause the transitions to the new states to occur. Based on
this, the earlier example could be written as follows:

• Get in the car
• Check to see if the key is in the ignition
• If it is then turn the key and start the car
• If it is not then put the key in the ignition and turn the key to start the�car
• Check to see if the car is running
• If it is running then put it in drive and drive away

67

Using Unity and PlayMaker

This approach to thinking through our state machine is quite a bit
easier to visualize the actions, states, and events. There is another major
advantage to this approach, by looking at it we pick up on some logical
issues that many of you may have already noticed, but that were not
immediately obvious to begin with. Specifically, the “check to see if the
car is running” should occur before “checking to see if the key is in the
ignition.” After all, based on what we know about state machines already,
there is no way that our flow of actions will ever get to the “check to see
if the car is running.” Consider this for a moment before moving on to
the next paragraph, when we “check to see if the key is in the ignition”
there are only two possible outcomes: it is in the ignition or it is not in
the ignition. If both of these outcomes lead to transitions out of this
state, then the actions that come after the comparison action are never
executed. Earlier we mentioned that the top-down sequential execution
of actions is important and something that should not be overlooked;
here, we can see an example of it causing us a problem and it would be
an�annoying problem to debug because it is not immediately obvious
why it is not “checking to see if the car is running.” This is the same as the
plain English sentence structure version; however, it is easier to dissect
and convert to�the state machine that we saw in Figure 3.16. Also, note
that this bulleted list approach helps us to pick up on repeated actions.
This indicates multiple avenues to the same state and may not have
been�quite�as obvious to us through the other plain English sentence
approach.

There is one further special type of transition that we would like to
mention�before bringing all of this together into a �nal example. This
transition is the “FINISHED” event. This event occurs when all of the actions
within a state have completed their execution and are �nished. As a result
of those actions being completed, we may want to transition to another
state.�This event is an overlooked but very powerful tool to add to our
tool belt when building state machines as there will be many times when
we want�a sequence of actions to occur and when those are done go do
something else, but the something else is not logically part of the same
state.�There are two primary types of states that we will be interested in
creating: ones that loop continuously until something happens causing
them to go do something else and those that will only execute their list
of actions one time before going on to do something else. Remember, a
state encapsulates a set of actions that are logically a part of each other.
You can see an example of the FINISHED event in Figure 3.16 when we
transition from starting the car to driving the car. This transition event could
be named “when car starts” or “when you have �nished starting the car.”
For the moment, we are ignoring the very real possibility that the car does
not start due to some mechanical issue. We will leave error checking and
handling for�later.

OK, let’s build an example from scratch. As I sit here typing on a cold
winter morning, I have been enjoying sipping from a mug of hot green
tea; however, it is now empty and I would like some more. Let’s create

68

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

a state machine that would, if the technology permitted, allow my
computer�to�make the tea for me so that I would not have to get up and
make a new mug. We will begin by creating a bulleted list of what it
needs to do and from that see if we can �nd some states, actions, and
transitions. I have intentionally left out the color-coding on this example
to give you�the opportunity to try to come up with it on your own
prior to�building that actual state machine itself, which can be seen in
Figure�3.17.

• Put mug on kitchen counter
• Add tea bag to mug
• Check tea kettle
• If water is still hot add water to the mug and put tea kettle back on

stove
• Take mug to o�ce
• Let tea steep (subtle, but notice this is one time and next is a loop?)
• Sip and enjoy
• Otherwise turn on the burner for the tea kettle
• Wait (but don’t watch because a watched pot never boils)
• When water starts to boil
• Turn o� burner
• Add water to mug and put kettle pot back on stove
• Take mug to o�ce
• Let tea steep
• Sip and enjoy

69

Using Unity and PlayMaker

State 2
Turn on kettle burner

State 3
Add water to mug
Put kettle on stove

State 4
Take mug to office
Let tea steep

State 5
Sip and enjoy

State 1
Put mug on counter
Add tea bag to mug

Water is hot

Water is hot

FINISHED

FINISHED

Water is cold

FIG 3.17 A state machine to have my computer make a mug of green tea for me, or at least a starting point.

3.7 Using PlayMaker
Now that we have a good starting understanding of the PlayMaker interface
and state machines, we will combine the two and create some state machines
inside of PlayMaker to modify some basic behaviors in our testing scene.
We are going to go ahead and add another 3D game object to our current
test scene and apply some PlayMaker state machines to it. That way we can
easily remove the object and the scripts if we want to at some later time. For
the moment, I have opted to add a sphere to the current scene and placed
it in a viewable area as can be seen in Figure 3.18. We are going to create
some basic state machines and attach them to this object to get our feet wet
with PlayMaker before moving on to characters and character controllers.
Make sure to create a new material for our little sphere, as we did in the
earlier section. One other note about our sphere, the collider that has been
automatically added to it is what Unity will use in order to detect if we are
clicking on it or if the mouse is over it. If we were to remove the collider from
the object, then the events would no longer work as there would be no way
for Unity to detect if the mouse has intersected with the sphere or not, in fact
we will test this to verify later.

This sphere object is going to allow the user to click on it and then have
di�erent things happen. We will begin by having the sphere change colors
when the mouse is hovering over it and maybe have it get larger as well.
Then we will add the ability to change colors of other objects by clicking on

70

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.18 A new sphere has been added to the scene.

the sphere. To begin we need to put our state machine into a nice bulleted
list to make sure that we understand what it is doing:

• Set the color to a default value
• When the user moves the mouse over the object

• Change the color to a new color
• When the mouse moves away from the object

– Set the color back to default and repeat
• If the user clicks on the sphere

– Set one of the blocks to be the color of the sphere

At �rst glance, this may seem simplistic in comparison to our green tea
example; however, the green tea example was a hypothetical one, whereas
this will be implemented. Also, let’s ensure that we can spot the actions and
the events clearly before building systems that are overly complex. In this
example, there are three distinct events: when the user moves the mouse
over the object, when the mouse moves away from the object, and when the
user clicks on the object. For the development of the state machine itself, we
will go straight into PlayMaker now that we have a nice list of the actions and
events that we need to worry about.

Make sure that the sphere is the currently selected game object and
open the PlayMaker editor, if it is not already open. Beginning with the
blank editor window, right-click in the state machine editor pane to add
a new state machine to this object, the sphere. We can add multiple state
machines to each object and this is a very useful thing to keep in mind as
we progress and begin to construct more complex behaviors; we do not
need to try to �gure out how to cram everything into one state machine.
After selecting “add FSM” your editor should have changed to appear as
it�does in Figure 3.19.

Notice that not only has a small state machine appeared in the left-hand
panel, but the right-hand information panels have changed as well. In the
right-hand panel, we now have PlayMaker’s equivalent of the Inspector
Pane as it pertains to the currently selected state, highlighted with the
blue border. We can change the name of the state, currently “State 1,” to
something a little more appropriate. We can also add a brief description
of the state that will appear directly beneath it within the editor view.
Between good descriptions and descriptive names, there should not be any
problems for others to know what each state does within our machine. Or
more importantly, there should not be any di�culty for us to know what
each state is supposed to be doing when we return to it for debugging
purposes. Go ahead and change the name of the state to “Waiting” and
give it a suitable description to explain that it is waiting for the user to do
something.

While it is still early in the creation of our state machine we should go
ahead and click on the FSM tab to give this machine a quality name and
description. We need to try to be deliberate about the development of our

71

Using Unity and PlayMaker

PlayMaker machines. By this I mean that we should avoid creating machines
when we do not know what they are going to do or what they will be
needed for. New programmers often make the mistake of throwing random
code at a problem hoping that the problem will magically solve itself. While
we may eventually stumble onto a solution through this approach, we will
not know why the solution works, or more importantly how to add content
to the solution so that it will be able to do bigger and greater things. This
same mistake can occur with PlayMaker when we just start creating state
machines in the hope that throwing some states and actions into it will give
us the functionality we are trying to develop. Slow down, force yourself
to name things, force yourself to give things descriptions. What you are
doing is making sure that you understand what should happen before
trying to convince the computer to do what you want it too. In this case,
I have named my state machine “Color Changer” and gave it an adequate
description. Take a look at Figure�3.20 and notice that the name and
description of the state machine is not only visible within PlayMaker, but it
also appears within the Inspector panel for the sphere game object, this is
very nice as if we ever want to disable a state machine, we will not be forced
to guess which one is which, we can read which is which directly in the
Inspector for the object.

Now that we have the basics of our state machine out of the way we can
add some actions to our state. To begin, we will take a look at how to move
around within the Editor viewport. Holding the Middle mouse button down
allows us to pan our view of the state machine. Currently, it looks as though

72

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.19 The PlayMaker editor after adding a state machine to the current object.

we are actually moving the state machine itself, but we are in fact panning
our view of it as we will see when our machine has more states within it.
In the bottom right portion of the State inspector view is a button labeled
“Action Browser.” By clicking this button, we will be greeted with a browser to
search through all of the available actions within PlayMaker (see Figure 3.21).
This is a daunting and intimidating list at �rst. However, it is not necessary to
memorize the list, or to even memorize the categories per se, as we can use
the search bar at the top to try to �nd actions.

When we select an action from within the Action Browser, a description
of the action will appear in the bottom as well as a prototype indicating
what the action needs and what it can use. For example, let’s add an
action to change the color of a material to our current state. Since we are
not sure what it is called, we will type “color” in the search box and see
what pops up. There are a bunch of options that appear and scrolling
through them reveals many that sound interesting but still pretty fuzzy
as to exactly what it is that we want. Before panicking, we will pause and
consider things for just a moment. In order to change the color of a game
object, what did we have to do? We created a material, added the material
to the game object and then gave it whatever color we wanted within the
material. So, if we want to change the color of this object, it would stand
to reason that we might need to do something to the material of it. As a
result of this, we may want to check in the category for Material and see
if there is anything that our “color” search found. As it turns out there is
a “Set Material Color” and if we select it we can see the description for it
in the bottom of the Action Browser. According to the description, this

73

Using Unity and PlayMaker

FIG 3.20 The name and description in PlayMaker is duplicated in the Inspector panel.

action should set a color to the game object’s material that sounds like
exactly what we want, let’s see what will happen. Go ahead and click the
“Add Action To State” button at the bottom. Conversely, you could also
double-click the action to add it, or drag the action from the browser into
the state inspector panel. Figure 3.22 depicts the State inspector with this
new action added to it.

We are going to take a moment here to look through what we are seeing
to make sure that we understand the basic properties of actions within
PlayMaker. It begins with the Game Object selection. This is used to select
which Game Object we want this action to be performed on. As a general
rule the default value of “use owner” is exactly what we want. What that
means is for this action to be performed on the object that this state
machine is attached to, the owner of the state machine. However, there
will be times that we want the action to be performed on some other
object. For instance, in our current example when the player clicks on the
sphere we will want to change the color of some other object instead of
the�sphere.

Every action within PlayMaker will begin with the Game Object selection.
The options that come below will be di�erent for each action, though after
looking at a few actions we will begin to get the hang of them. In the case
of the “Set Material Color” action, the next property is the Material�Index.

74

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.21 The default action browser in PlayMaker.

This is referring to which material from the Game Object selected in the
preceding property we want to modify. The list of materials applied to
a speci�c Game Object can be accessed through the Mesh Renderer
component in the Inspector panel. As it turns out, the sphere only has one
material applied to it and that material is located in Element 0, as seen in
Figure 3.23. Therefore, Material Index 0 in the Set Material Color action
will refer to Element 0 from the Materials list in the Mesh Renderer of the
owner Game Object.

Following the Material Index component is a Material property. With
this option, we can specify a material from the Project pane by dragging
the material into this slot. An interesting e�ect of doing this would be
to change the color on that base material and thereby change it on all
objects that have that material assigned to them. This needs a moment
of clari�cation, for this is subtle but very powerful stu�. If we modify the

75

Using Unity and PlayMaker

FIG 3.22 The State inspector with the Set Material Color action added.

color property of the material that is located in Element 0 of our object
(it happens to be the sphere material), we are only changing the color of
the instance of the material attached to this object; we are not changing
the color of the original sphere material. However, if we drag the sphere
material into the Material property for our Set Material Color action, we
will be changing the color of the base material, which will in turn change
the color for all objects that have that material associated to them. Let’s
demonstrate this concept very quickly, by making some minor changes to
our scene:

 1. Select the sphere material from the Assets � Materials section in the
project pane.

 2. Drag this new material onto the ground object in the Scene Editor,
notice that it is now the same color as the sphere.

 3. Play the game and notice the results:
 a. Our PlayMaker script is executed and the sphere turns black, but

the ground stays white; we have changed the color of the material
instance on the sphere, but not the base material.

 4. OK, now in PlayMaker modify the properties of our action such that
we drag the sphere material from the Assets � Materials section of
the Project pane onto the Material property.

 a. Now run the program again and observe what happens. Both the
ground and the sphere are black, because the color of the base
material has been changed.

 5. Go ahead and return this to what we had by replacing the sphere
material on the ground with its original material.

76

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.23 The Mesh Renderer component of the sphere Game Object, notice Material Element 0 is the material
we created earlier for the sphere.

 6. To reset the Material property of the Set Material Color action, click
the little circle icon to the left of the text box. This brings up an asset
browser from which we can select an appropriate asset in either the
Scene or the Project (this is another way of applying the material without
dragging it from the Project pane). Browse to the top of the selector and
select the “None” option to return our Material property to none.

At �rst glance, that may have seemed like an interesting if somewhat irrelevant
little diversion in our exploration of PlayMaker and Unity. However, we were just
introduced to an enormous principle of modern programming and as a result
game development, object-oriented programming. We have a material; let’s call
it sphere that is de�ned in our Project. This is the parent, or the base, or the class,
from which we can derive materials to put into our game. As we drag the material
onto an object in our scene, we are creating an instance of that original class. This
process is referred to as “instantiating an object.” The instance of the material,
or the child, will inherit all of the properties of its parent, but can then have new
properties or modi�ed properties that di�erentiate it from the parent. We will see
this in much more detail when we start building our game world.

Following the Material property are two properties that are easily confused
as at �rst glance they seem as though they accomplish the same task.
But, they are actually quite di�erent. The �rst property, Named Color, is
allowing us to determine which color property within the material we want
to change. As has been mentioned this is not really a book on shaders and
materials, so without going into a large amount of detail we will simply state
that the default value of “_Color” is what we want. This value refers to the
main color of the material. Other color values that could be altered within
the default shaders would include specular, emission, and re�ection�colors.

The next property is labeled Color and this one will specify which color we
want to change the material to. We have two methods of selecting the color,
though we will add a third in a few moments. We can click the color bar, which
is black by default, and then use the color selector that we used earlier to
determine which color we want to use. The other approach is to select the
eyedropper icon which will allow us to pull the color values from something
and use that for the new color. This eyedropper tool is very powerful as we can
pull the color from a Game Object in the scene or even from a rendered Game
Object while the game is playing to be able to match colors. This approach
is often done when working with shaders to get the various colors the way
that we want them. For now, I am going to leave the Color property at the
default value of black. As we have already seen, if we run this game then the
sphere will change to a black color, so we know that our state machine is
currently working. It is strongly encouraged that you get in the habit of testing
your scripts as you are working on them piece by piece to make sure that
each component is doing what you want it to do at that point in time. This is
referred to as iterative development, building a small piece, testing it, �xing
it (if needed), and building the next piece. This is also a form of unit testing as
we will encounter later when we explore testing and building.

77

Using Unity and PlayMaker

There are two more elements that we need to discuss in the state
properties before moving on. The box with two lines in it to the right
of each property is the variable toggle. If we click that box then the
selection for that property will change to a drop-down list from which
we can select a variable that is appropriate for that particular property.
The other option to look at is the “Every Frame” check box at the bottom.
This toggle will determine whether this specific action is to be performed
every frame, which is every time that the screen refreshes or updates, or
if we only want to do it one time. Having Every Frame turned off for our
current example, though in the next chapter we will see the power of
that�toggle.

With our starting state constructed and an understanding of the components
that are within it, we are going to go ahead and add a new state to our
machine. Do this by right-clicking within the state machine editor pane and
selecting the option “Add State.” Following what we did above we are going
to complete the following steps with this new state (Figure 3.24 depicts the
�nal version of this new state that I created).

 1. Give it an appropriate name and description
 2. Add the Set Material Color action to it
 3. Make sure the properties are set correctly
 4. Change the new color to something other than black

78

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.24 The new state and properties for another Set Material Color action.

Hopefully, as you were working through the above steps you noticed something
very interesting when you were adding the Set Material Color action to the
state. In the Action Browser, there was a number in brackets next to the action.
That number indicated how many times that particular action was currently
being used by the state machine. This can be helpful, because there will be
times when we are looking through the possible actions and the description of
something sounds like what we want so we select it. After adding this di�erent
and unknown action to our machine, we then spend a fair amount of time trying
to �gure out why it is not working like the other one did. An example of this is
the Audio Play and Play Sound actions; they seem like they are the same, but in
actuality are slightly di�erent leading to di�erent behavior during the execution
of the game. If we had already used one of these actions, then it would be
indicated with a number within the bracket and during our next selection we
would be able to recognize which action we used before.

We now have our two states created and just need to add an event to these
things to get our scripted behavior working. If we refer back to our original
bulleted list, we will see that the event that will cause a transition to the
Change Color state is when the mouse comes over the object, and then we
will transition back after the mouse leaves the object. Select the “Waiting”
state and right-click to bring up a context sensitive menu from which we
can select “Add Transition.” This pop-out menu includes all of the default
events available within PlayMaker. Notice that one of the events is the
“FINISHED” event that we mentioned in our earlier discussion. While we can
create custom events, if there is a default event that does what we want,
we can save time and work by using it. If we point the cursor to the “System
Events” section, we will get a pop-out for several default events generated
by the system that we can utilize. These are speci�cally generated by the
MonoBehaviour class and are messages that it sends out when certain
things happen while the game is running. In our case, we are interested in
leveraging these mouse events that it includes and these messages are sent
out whenever the mouse has interacted with the collider of the owner object.
A full list of these mouse messages is available in Table 3.4.

79

Using Unity and PlayMaker

TABLE 3.4 Listing of the Default Mouse Event Messages Generated by Unity

MOUSE DOWN Left mouse button has been pressed over the owner
object.

MOUSE DRAG Player has clicked on the owner object and is still
holding the button down while moving the mouse.

MOUSE ENTER Mouse cursor has entered into the area covered by the
collider of the owner.

MOUSE EXIT Mouse cursor has left the area covered by the collider
of the owner.

MOUSE OVER Called every frame that the mouse is hovering over the
collider of the owner.

MOUSE UP Player has released the mouse button.

For our problem, it appears as though we have two options that will satisfy our
needs. We could select either the MOUSE ENTER or the MOUSE OVER event
and in this case either one will work. Let’s begin by using the MOUSE ENTER
event, once you select that notice that the event has been added to a box in
the state and that we now have a red exclamation point, error message, at the
top left of the state. The error message is informing us that we have an event
that is not actually transitioning anywhere. This is a common message to see as
we are constructing our machines and one that we can ignore at the moment.
But�as�our machines get more complex, spotting those red exclamation points
can help us zero in on the areas of our state machines that should be causing
the problems. To make this event lead to a transition to another state, simply
drag from that event to the state that we want to transition too. Let’s test this,
iterative development, and see if the color of the sphere changes when we
mouse over the sphere object. It looks as though we have the behavior that we
wanted, when I moved the mouse over the sphere it turned red. So, let’s �nish
this part of our state machine o� by adding a MOUSE EXIT event to our Change
Color state and connecting this event to the Waiting state.

Congratulations! You have created your �rst behavior script is based entirely
on the logical structure of a state machine. It may not be the most exciting
behavior, but then again it is a solid starting point. A couple of notes before we
complete this section; did you notice what happens in the PlayMaker editor
window while the game is running? There is a green box around the currently
active state, and as you moved the mouse around you could see the activity
occurring within the PlayMaker editor; this helps us to see exactly where our
scripts are and what they are doing. The last thing to notice is that the state
label displayed over the object while the game is running. There are many times
that it can be very useful to be able to see exactly which state a given object
is in; however, as we complete state machines or as we prepare to publish and
release our game we will no longer want those state labels to appear. To remove
the state labels, turn o� the Show State Label option in the state machine
section of the Inspector panel for the owner object (see Figure 3.25).

To complete our original vision for this state machine, we only need to add a
couple more pieces. We will need a new state that will be changing the color of
some other object. Since we are changing the color of a di�erent object, we will
want to specify the object rather than use the default of “Use Owner.” Notice that
when we do this we get a new box where we can tell the action exactly which
object we want to use. We can either drag the object from the Hierarchy panel
into this box or use the circle selection option to bring up the Asset Browser to
�nd the object. One warning at this point, be careful to ensure that you are using
an object from the scene (either the Hierarchy panel or the Scene tab if using
the browser). Selecting an object from the Project pane is perfectly acceptable;
however, be aware that this means we will be modifying the object that is in
the Project, not the instance of the object that is actually in the scene. With our
new state created, we just need to connect it to everything. I will do this with
a MOUSE DOWN event connected from Change Color to the new state and a
FINISHED event connected from the new state back to the original Waiting state.

80

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Figure�3.26 displays the �nished version of this state machine. By left-clicking
on one of the states we can drag them around in our editor pane to make them
easier to view, especially those transition arrows. A quick play through will show
that we have the behavior that was initially described in our problem.

Our current solution to this problem is “hard coded.” This means that the
values, such as new colors and which objects to modify, are speci�ed within
the actions themselves. Therefore, if we ever wanted to go back and change
it so that the sphere changes to a di�erent color we would have to go into
the state machine itself and make those changes. At the moment, that does

81

Using Unity and PlayMaker

FIG 3.25 The toggle to display the state label during game execution.

not seem like it would be a huge problem; however, if we were to consider a
larger game it quickly becomes more e�cient to use variables and then when
we want to make a change we simply modify the value of the variable and
that change will cascade throughout our state machines. In the next chapter,
we will look at variables in detail when we construct the character controller
system for our main game character.

We have one �nal topic to cover before moving on. When it comes to using
PlayMaker, we are limited to the actions that are included within our installed
PlayMaker package. If we want any other actions than what is available within
the Action browser, we will have to create our own, or we could add custom
actions to our installed PlayMaker package (these are actions that other
people within the PlayMaker community have created). A�nice graphical
package and action browser has been developed for use with PlayMaker
called “Ecosystem,” which we are going to go ahead and download and
add to our current project just in case we ever need any other actions that
are not included within the default package later. The Ecosystem download
is located at https://hutonggames.fogbugz.com/?W1181 and can be
downloaded by clicking the link labeled “EcosystemBrowser Package.” Once
the package �le has been downloaded, go ahead and locate the location
where it was saved on your computer and drag this package into the Project
pane of Unity as shown in Figure 3.27. Once the package is released into the
Project pane, Unity will decompress the package and give us the option as to
which components we would like to import into our project (see Figure 3.28).

82

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.26 FINISHED state machine as initially described.

83

Using Unity and PlayMaker

FIG 3.27 Adding the Ecosystem package to our Unity project.

FIG 3.28 The Import components dialog box when importing a package to Unity.

For our case, we are going to leave all of the components. This is the same
process we went through to add PlayMaker to our project initially.

The Ecosystem browser is a very powerful tool that will enable us
to search for new actions to import into our project if we need. The
browser�will automatically handle downloading, importing, and
rebuilding PlayMaker for anything that we decide to add to it. The reason
for the rebuild is that the actions utilized by PlayMaker are written in
the C# language and in order for them to be utilized by PlayMaker, Unity
will need to compile them after they are imported into the project.
Once the�new actions have been added, they will be available through
the Action browser that we have used thus far. To launch the Ecosystem
browser select PlayMaker from the toolbar followed by Addons��
Ecosystem. The first time it launches you will be greeted with a disclaimer
and an option to watch a YouTube video providing a quick introduction to
the system. The orange button at the bottom will exit the disclaimer and
open the browser itself as depicted in Figure 3.29. We will worry about
actually searching for and installing any new actions later if it becomes
necessary.

84

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 3.29 The Ecosystem browser and interface.

3.8 Summary
In this chapter, we looked at how to obtain copies of both the Unity 3D game
engine and the PlayMaker visual scripting system so that we can begin to
make our own games. We also got to know the user interfaces for both,
while�they are daunting at �rst, we have gained a solid understanding of the
basic elements and the core components that we need at this point in time.
State machines have changed from an abstract concept to a logical construct
that we can use to build the behavior of the objects within our game worlds.
While we may not have put a game together just yet, we have the basic
understanding of these building blocks such that we are now ready to go to
the next step and begin adding a character into our game project.

Vocabulary
Project
Scene
Package
Scene Editor
Game view
Inspector pane
Component
Project pane
Hierarchy pane
Transform component
Transform gizmo
Game object
Layer
Tag
Mesh �lter component
Collider component
Physics material
Mesh renderer
Material component
Shader
State machine
State
Transition or event
Action
Variable
Object oriented
Ecosystem

Review Quiz
 1. What is the di�erence between a Unity Project and a folder?
 2. What key combination is used to pan the camera around a Unity scene?

85

Using Unity and PlayMaker

 3. What key combination is used to rotate a camera around a speci�c object
in a Unity scene?

 4. What is the least expensive type of collider to use on a Game Object?
 5. Who is the developer of PlayMaker?
 6. What is a state?
 7. What is a transition or event?
 8. Which folder within a Unity Project contains all of the content that we

create and add to our game?
 9. In a PlayMaker action, what would the owner object refer to?
 10. How can we pan the view in the PlayMaker machine editor view?
 11. What does the Every Frame toggle do in a PlayMaker action?
 12. Which built-in event could be used to know when the player has released

the mouse button?
 13. What add-on is used to add new actions to an installed PlayMaker package?

Exercises
 1. Modify the test scene that you created in this chapter to include some

platforms in the air for the player to jump onto and run along.
 2. Create two new Game Objects in the scene, have one of them change

the color of objects to yellow and have the other reset the colors to the
original color, both work when the player clicks them.

 3. Consider the following problem, create a bulleted list from this that
could be used as the �rst step in creating a state machine to control this
behavior (NOTE: focus on constructing the logical version of the state
machine, rather than implementing it within PlayMaker):

 a. We will create a game in which the player is represented by a ball. There
will be four buttons on the screen with arrows to represent which way
the ball can go. When the player clicks on one of the buttons the ball
will move in the direction indicated by the arrow on the button.

 4. Modify the scene and state machine that we created in this chapter such
that when the user holds the mouse button down the color will change as
we created it to, but when the user releases the mouse button the color
returns to what it was.

Design Document

Download
The Design Document that we created in the last chapter has not been
updated with any information from this chapter, therefore there is
nothing to download.

We do not have any new information to add to our design document, so what
was done in the last chapter will hold through until we get to the end of the
next chapter. Although, many times in a design document there is a section
that speci�es which tools will be used during the project as well as �le format
and version speci�cations.�

86

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

SECTION II
Building Blocks

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 4

Characters

Now that we have some solid concepts on game development under our
belts, we are going to start laying the foundation for our game. Characters
play a pivotal role in some games. However, as we will shortly discuss, not all
games rely on characters. For our project at hand, we are going to need to
understand characters, after all the game does star Sancho Panza, in order to
better design our player character and any others that may appear during the
game. Even if you are building a puzzle or strategy game, see Chapter 1 for a
discussion of these di�erent genres, characters can play an intriguing role by
providing a context for the game, not that this is necessary, but it is an option
to consider. If you are considering building a role-playing or story-driven
game, then the characters will be vital to your project. There is a tremendous
overlap between characters and stories which will cause the next chapters to
blur together in some aspects. In this chapter, we will explore the following
concepts as they pertain to characters and video games.

• Purpose of Characters
• Do Games Need Characters?
• Traditional Character Types

89

• Game Character Types
• Character Development
• Character Design
• Importing Models in Unity
• Character Control System in PlayMaker

4.1 The Purpose of Characters
Characters provide us, as the audience, with a reference within the story. The
characters that we develop for our audience become the perspective that
our audience experiences things through or with. Characters also provide a
means for distributing information, usually to other characters and therefore
to the audience indirectly, although it could be direct through the breaking
of the concept of the fourth wall. The characters of a story allow the audience
to explore the questions and dilemmas of the story from a safe vantage point;
for instance, I may enjoy exploring the depths of human bonding and loyalty
through war movies such as Band of Brothers, however, that does not mean
that I have any interest in actually serving during the frigid nights of the
Battle of the Bulge of World War II. Stories cannot exist without characters;
they are the framework that the story hangs upon. After creating characters,
we can develop stories by throwing our characters into interesting situations
and exploring various questions of morality or friendship or just aspects of
being alive. It is through the implementation of characters within a story that
we can create tension and emotional connectedness.

4.2 Do Games Need Characters?
The short answer to this question is “No, games do not need characters in
them.” We can create many great and fun games that do not contain any
characters. Games of chance or strategy can be created with no characters
within the game and also with essentially no story to the game. Consider
many of the board games that you may play, the only characters within those
games are the human players themselves. Consider the exciting strategy
game Clear Tactic (Figure 4.1), developed by Enlitanment Studios. While this
game does not provide characters in this traditional sense, it still provides a
fun and challenging game-play experience with a high replay value. In fact,
a strong argument could be made that games can have higher replay values
without characters due to an increase in the �exibility of the game-play
experience. Through playing a game such as Clear Tactic, the traditional roles
of characters, speci�cally the hero and shadow as we will discuss shortly,
is taken on by the human players themselves. This makes the game-play
experience dynamic and di�erent each time that the game is played.

We need to pause for a moment to di�erentiate between avatar and
character. An avatar in a game is a physical representation of a player. For
instance, the player piece that you may select for a game of Monopoly is
your avatar on the board, this is not a character. A character, on the other

90

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

hand, may incorporate an avatar for the player, but more than that in order
to be a character it must contain its own goals and motivations within the
game. Consider a computer-based role-playing game (CRPG), as game
developers, we need to provide a customizable avatar for the player to
represent themselves within the game world and we must provide a �exible
story for�the player to interact with; however, the player’s motivations
for doing what they do will be entirely de�ned by the player themselves,
within the con�nes that we provide inside of the story. On the other hand,
if we create a third-person shooter in which the player plays the role of a
SWAT team member �ghting crime in some �ctional city, we as the game
developers have created a character and avatar for the player, why the player
is doing what they are doing is de�ned by the motivations and desires of
the character that we have created. This may be a subtle distinction, but it is
very important for us to grasp. Video games must have some form of avatar
to represent the player within the game world, the moveable pieces from
Enlitanment Studio’s Clear Tactic for instance, but they do not need to contain
characters, unless we require characters because of the story that we wish to
tell through the game-play experience.

4.3 Traditional Character Types
Through the history of storytelling and drama, a rich heritage of character
types has developed. While it is not necessary for each game, or indeed
even any game, to contain all of these di�erent characters, it is nice to know

91

Characters

FIG 4.1 Clear Tactic by Enlitanment Studios as played on Facebook.

what we have available to us in the traditional arsenal, especially when we
get into creating stories. Over the years, many people have studied the
traditional stories that societies tell looking at how they are constructed
and the characters that appear within them. A full book could easily be
dedicated to a solid study of characters and character development, both
in and out of games. As an introduction to this topic, however, we have
selected the character types developed by Christopher Vogler in his work
The Writer’s Journey: Mythic Structures for Writers.

A little background is in order before going on into the character archetypes.
Christopher Vogler’s work was developed as a blueprint for the adaption
of Joseph Campbell’s The Hero with a Thousand Faces to the creation of
screen writing. Joseph Campbell spent most of his life studying mythology
from all cultures and utilized the theories of Carl Jung and Sigmund Freud
in his analysis of these legends and myths. Over the course of this study,
he began to notice a certain pattern emerging. This pattern would go on
to become known as the hero’s journey or journey of the hero. We will
look at this pattern in more detail in the next chapters as it speci�cally
pertains to stories and the events within a story. But, for now, what we
are interested in is that Joseph Campbell noticed that within this hero’s
journey, there were speci�c character types needed to ful�ll speci�c roles,
and Christopher Vogler has provided a solid guideline for the use of these
character archetypes. Throughout the following discussion on the character
archetypes, we will reference the classic work The Lord of the Rings by J.R.R.
Tolkien as an example of these character types in action. This particular story
was created prior to the work of Joseph Campbell and yet because Tolkien
was a scholar of old English and Nordic legends, his characters incorporate
the same archetypes. Table 4.1 displays an overview of the character types
that we will be looking at.

92

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 4.1 Christopher Vogler’s Character Archetypes and Examples from The Lord of the Rings

Archetype Story Purpose Example

Hero Protagonist, main character of the
story

Frodo

Shadow Antagonist, main villain of the story Sauron

Mentor Trainer and teacher for the hero Aragorn

Ally Helper and assistant to the hero Samwise

Herald Beacon pointing the hero in the
correct direction

Gandalf

Trickster Comic relief and general mischief Mariadoc and
Peregrin

Threshold
Guardian

Obstacle before the hero can pass
into new knowledge

Shelob, among
others

Shapeshifter Character with seemingly changing
loyalties and views

Gollum

4.3.1 The Hero

Every story must have a central character, a primary and pivotal character
around which the whole story revolves. It is through this central character
that the audience will experience the story. Not only will the audience
experience the story through this character, but the audience will also
perceive the story through this character. This central character is the hero
of the story. In a video game, the hero is also the player character; after all,
very few of us would want to play a video game in which we were not the
pivotal character of the game, though this may be an interesting concept
to incorporate into a game idea. A traditional view of the hero character
is a character that has a willingness to protect others that are not able to
protect themselves. This protection provided by the hero character may
even involve the sacri�ce of the character in some way. However, the game
industry has begun to experiment with this model by casting the main
character of the game in a morally ambiguous context. While the exploration
of morality within a story and game experience is an exciting opportunity
for us to explore, keep in mind that in order to follow these classic models of
storytelling, the hero should follow those more traditional guidelines.

The hero for The Lord of the Rings is Frodo Baggins. He was a typical Hobbit
that could so easily be identi�ed with by the audience even though the
audience did not actually consist of any Hobbits. He cared for the other
Hobbits and Middle Earth in general but would much prefer to be left alone.
However, his character is such that he is willing to do what must be done to
protect those that cannot protect themselves, to the ultimate willingness of
sacri�cing himself if it were to become necessary.

4.3.2 The Shadow

The opposite of the hero is the shadow character. It is the job of the shadow
to challenge the hero in various ways. Generally speaking, the shadow
should be a character of similar qualities to the hero in order to provide
con�ict for the characters in the story and also to provide challenges for the
player in the game. The shadow could, and generally should, be stronger
than the hero at the beginning to allow for character growth; however,
by the conclusion, they should both be fairly evenly matched, consider
Luke Skywalker and Darth Vader at the end of Return of the Jedi. Within the
context of a video game, the shadow character is the boss of the game or in
some cases of the level depending on the construction of the game itself.
A�well-designed shadow character should be a mirror of the hero, not only
in skills but also in world outlook as it is through this di�erence between the
primary characters that con�ict can so easily be created and nurtured. It is of
interest to note, however, that the shadow does not have to be a character
in the traditional sense that we may consider one. The essential purpose of
the shadow character is to provide a physical form to oppose the hero, and
this opposition may come in the shape of an inanimate object just as easily
as an animate character, it depends on the needs of the story (or in our case
the game).

93

Characters

The shadow from Tolkien’s work is Sauron. This character perfectly embodies
the darkness of the story and presents the hero with his ultimate challenge.
In Sauron, we can also see an example of a shadow character that does not
necessarily have a physical form in the traditional sense. Rather, Sauron
spends the trilogy growing in power and manipulating others, but always
without actual form. His presence and challenge to Frodo is not merely in
the physical sense, but also in a deeper mental and spiritual sense as the two
opposites struggle for ultimate control of the ring of power. This essential
con�ict between the hero and shadow is one that we will return to when we
explore the development of stories and con�ict.

The hero and the shadow form the two primary characters required. It is not
necessary to have any other characters involved. Many �ghting games, for
instance, are based entirely around the con�ict between two characters, one
being the player’s character (or the hero) and the other being the player’s
challenger (or the shadow). We can even look at many classic video games
such as Donkey Kong or Ms. Pac-Man, while they de�nitely do not have
complex story lines, they do have story lines nonetheless and within those
stories are characters. For Donkey Kong, there are three characters, a hero
played by Jumpman (the player), a shadow played by Kong (the computer�AI);
the other character we will not worry about at the moment. Likewise,
Ms.� Pac-Man has a small cast of characters that can essentially be boiled down
to the heroine as Ms. Pac-Man (the player, once again) and the shadow which
has four physical representations in the ghosts (again, the computer AI). Many
wonderful and fun games can be created with no more of a cast than the
hero and the shadow because we have provided a player character within the
hero and an obstacle to the player within the shadow and at its core this is all
that is needed for fun games.

For the construction of more complex and engaging stories, however,
more characters will be necessary. As Christopher Vogler points out, these
characters are not just �ller and stage dressing, well some may be, but
these other characters have very speci�c roles to ful�ll within the story and
therefore within the game as well. The remaining character archetypes that
we will look at are: the mentor, the threshold guardian, the herald, the shape-
shifter, the ally, and the trickster. We are not required to have a representative
of each of these archetypes within our games, and we may have more than
one of certain archetypes, for instance the ally.

4.3.3 The Mentor

The mentor is a character type that appears early in the story to provide
assistance to the hero. Not only does the mentor provide help, but the
mentor will also train the hero many times in some fashion to prepare the
hero for the road ahead of him. Generally speaking, the mentor tends to
be some aged character with a seeming overabundance of wisdom; in fact,
the mentor may even have hints of divinity to them. Whatever con�ict is
planned between the hero and the shadow, it is not the mentor’s job to
�ght this battle, but only to get the hero out the door, so to speak, and send

94

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

them down the proper path with the proper skill set, or at least a solid start
to obtaining that skill set. At �rst glance, we may throw Gandalf the Grey,
from Tolkien’s work, into this role as mentor. This would seem reasonable as
Gandalf is older, is wise, and does appear as divine in many ways. However,
the ultimate role of the mentor is to train the character, to get them going in
the right direction. While we could still make an argument that Gandalf ful�lls
this role, a better �t for the mentor character archetype would be Aragorn or
even the fellowship as a unit body.

4.3.4 The Ally

Speaking of helpers for the hero, these are found in the character archetype
labeled as ally. The purpose of the ally character is to travel with the hero, to
provide assistance to the hero. This assistance may be in the form of combat by
�ghting alongside the hero, or it may be in the form of taking care of the hero’s
basic needs, such as cooking dinner. Ally characters also provide someone
for the hero character to talk to during the story. Without conversations, the
audience will never know what is going on inside of the hero’s head and
therefore what the hero thinks or feels about certain events that occur within
the story. Granted, we could provide such character insight through the use of
voice-over narration of what the hero is thinking, but it is far more engaging
for the audience to have interaction between the hero and some other
characters. It is also interesting to note that many times these ally characters
go on to become some of the most beloved characters of stories. Frodo’s
ally throughout The Lord of the Rings is the ever faithful Samwise Gamgee.
Throughout his journey, Frodo can always rely on Samwise being there to help
him in either large ways or smaller ways. Samwise also provides someone for
Frodo to talk to and to help bear the burden that Frodo is stuck with.

4.3.5 The Herald

Another vital character archetype is one that Christopher Vogler has labeled
as the herald. The role of the herald, quite simply put, is to announce the
coming of change. As a general rule, these character types will appear very
early in the story to inform the hero that something is coming and to issue
a challenge to the hero to start the story rolling. Heralds will also reappear
throughout the story to remind the hero character of what it is that they are
supposed to be doing, to encourage them along the path, and to keep them
from going too far o� track. Given this new character archetype, we can see
how Gandalf the Grey from The Lord of the Rings so easily �ts into this role.
He was there at the start of the story to get the ball rolling, so to speak, with
Frodo and would reappear from time to time, always reminding Frodo of
what his task was.

4.3.6 The Trickster

Most stories can do with some comic relief, or some characters that are there
just to express some desire for change, either good or bad. These�character

95

Characters

types are the trickster characters. Their role is comic on the one hand, but
it is also one of keeping egos in check. Through the trickster characters, the
hero’s ego can be kept from getting too far out of control. For The Lord of
the Rings, the hobbits, Meriadoc Brandybuck and Peregrin Took, Merry and
Pippin, are the trickster characters. They routinely provide a comic backdrop
to lighten more serious moments as well as a humble perspective. They are
ultimately driven into the story through their own desire for change and to
see new things, nothing more.

4.3.7 The Shapeshifter

Whereas the tricksters can be used to lighten a story, the shapeshifter
character can be utilized to keep the audience guessing and to keep the
hero on their toes. Shapeshifters are characters that may change their mood
or opinions at the drop of a hat and oftentimes keep the hero unsure as to
exactly what their motives may be. Because the loyalty and goals of the
shapeshifter are always somewhat in question and can seem to go either way,
these characters can provide an opportunity to introduce new plot elements,
something that we will discuss later. Gollum is a shapeshifter character
archetype. He continually �ips back and forth between good and evil,
constantly �ghting his own battle of desire for the one ring. This �ip-�opping
nature of Gollum allows the relationships within the story to become so tense
that Frodo places more trust in Gollum than he does in Samwise, despite all
the reasons not to do so.

4.3.8 The Threshold Guardian

Threshold guardians are fascinating character types and ones that we can
�nd very useful within game development. As a hero journeys through the
story, they will reach moments of growth or discovery. These moments
will be thresholds into a new portion of the story, into a new depth of
understanding and knowledge for the hero which in turn would mean new
information for the player as well. As the hero nears these points, there needs
to be a guardian there to prevent the hero from just waltzing through to the
new knowledge. These guardians can come in a wide range of individual
characters or obstacles. For instance, the hero may have to overcome their
own fear of the dark in order to sprint through the darkened hall in order
to get the key that will open a door. However, emotional or psychological
guardians are very di�cult for us to implement within a video game for
reasons that we will discuss later, although with the rise of virtual reality,
the doors are beginning to open in this area in some exciting and intriguing
ways. Threshold guardians can also be traditional physical characters, but
are never the actual antagonist or shadow of the story, that confrontation is
saved for the conclusion. J.R.R. Tolkien provided many threshold guardians
for Frodo to deal with throughout the story, perhaps one of the more obvious
one being Shelob, the spider that guarded the entrance into Mordor, and the
threshold into that portion of the story. Threshold guardians within video
games are the level bosses at the end of each level or section.

96

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

With these eight character archetypes, we can build a diverse and deep
story for our games. However, as discussed previously, we are not required
to create detailed and thought provoking stories for our games, after all we
are the Game Makers, we can create whatever games we want to make and
should always use game playability as the �nal benchmark for any decisions
involving the game. With that said, we can use the character archetypes to
quickly �esh out a basic game idea by recognizing how the types interact
with each other and depend on each other. See Table 4.2 for a summary of
how these character archetypes can be utilized within a game system and
example characters from Tales of Symphonia developed by Namco.

4.4 Game Character Types
As previously noted, games do not necessarily need to have characters
within them; however, for games that do utilize characters, there are some
additional types from those that Christopher Vogler has described. These
extra character types are exclusive to games, as they are not necessarily
required components for stories, but may very well be required in order
to develop the game-play systems and features that are desired. It is very
possible to double up these character types with those found within the
main character archetypes, but it is not necessary.

4.4.1 Merchants

We will consider the example of a computer role-playing game or an
MMO. In either case, we plan on developing a story for the player to
experience through the eyes of the hero character and within this
story will be utilizing many, if not all, of the character archetypes that

97

Characters

TABLE 4.2 Character Archetypes Used within Games

Archetype Game Use Example

Hero Player character Lloyd Irving

Shadow Endgame boss Mithos Yggdrasill

Mentor Tutorial system and
trainers

Raine Sage

Ally Other players in co-op
modes or non-player
characters (NPCs)

Genis Sage

Herald Character to be rescued
or objective markers

Colette Brunel

Trickster Comic relief Zelos Wilder

Threshold Guardian Level or section boss Temple guardians and
others

Shapeshifter Character that the player
is unsure of

Kratos Aurion

Christopher Vogler has outlined. However, we are also going to need
merchant character types for the player to interact with. These characters
generally will have no value to the story itself, but without which the
player will become severely limited in the actions that they can perform.
The merchants will allow the player to buy and sell goods and treasure
that has been gathered on their journey. They will also be able to rent
rooms to heal, or buy fragments of maps, or even random food and drink
items from a local tavern within the game world. These interactions are
in no way required for the telling of the story, but they are very necessary
for the immersion of the player. This immersion is something that we will
discuss in more detail in Chapter 7 on creating game worlds. But, for now,
immersion is how invested the player becomes within the game that we
have created. Our goal is for the players to lose themselves within the
games that we create, though probably not literally, but we de�nitely want
them to have fun.

4.4.2 The Quest Giver

Another important game character for these styles of games is the quest
giver. At first glance, it would seem as though the quest giver and the
herald would be the same character and perhaps they could be, at least
for main story line quests. However, for all of the side quests that we as
players enjoy so much, we will need characters to provide those quests.
We will need characters within our games with question marks and
the exclamation points hovering over their heads so that players will
know that there is some random quest to be had with some new piece
of loot to add to their collection. It is possible to merge this quest giver
character with the merchant character for some of the quests, but we will
also want�just everyday random NPCs to provide these opportunities to
our�players.

4.4.3 Information

The �nal game-speci�c character type we would like to mention is an
informational character. The purpose of this character is to provide a
source of information to the player, not the hero per se. For instance, upon
entering a new town, the player may need to know where the nearest
tavern is in order to go heal from the battles along the road. Many times,
there will be an NPC somewhere near the entrance of the town that the
player can interact with and obtain this basic information. This interaction
does not advance the story in any way but is important information that the
player will need in order to play the game. Once again, this character type
could be combined with a merchant, perhaps a street vendor peddling
their wares at the city gates, or it could be a stand-alone character,
perhaps a town guard on duty at the entrance. As developers, we can �nd
other methods of delivering this information to the player, but utilizing a
character of this type is a de�nite option and one that has been used many
times in the past.

98

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

We have taken a quick look at three additional types of characters that are
not required by the primary story that we are telling, but could prove to be
very important to the player playing our game. Just because these character
types exist, does not mean that we need to �gure out a way to shoe horn
them into every game that we create. On the contrary, we must always be
considering the playability of the game that we are working on �rst and
foremost. If adding a character, of any type, detracts from the playability and
the fun of the game, then that character must be removed, no matter how
important the character is to us personally; at least, it must be removed until
we can �gure out a better way to use it. Do not look at these character types
and archetypes as components that your game absolutely must have, for it
is very possible to make wonderful and engaging games with no characters
at all. However, if you are interested in exploring the possibilities of deep and
engaging story lines with large game worlds, then you had better consider
these character types and how they could �t into your game world.

4.5 Character Design
In this section, we are going to apply the theories that we have discussed in
this chapter. We have some advantages in our chosen game design in that
through the selection of a book, many of the characters have already been
created for us. Miguel Cervantes has already done the background work of
character creation for us. All we have to do is to drop the characters into the
roles that we want them to ful�ll and �esh out any missing details; we should
also consider altering the characters from the book to better �t the needs that
we have within our game. It is at this point that we may have a moment of
hesitation as we balk at the idea of altering the previously created characters.
Generally speaking, alterations to previously created characters are slimming
of the character, dropping some details and background in order to make a
more simpli�ed personi�cation. While it is true that our goal is to create deep
and vibrant characters for our games, we must always remember that we are
making games and that our primary goal is to create something that is both
playable and, if we are fortunate, something that is fun.

When creating a character, we should begin by asking ourselves some very basic
questions to get started as depicted in Table 4.3. As we answer each question,
the following ones become relevant or not for us. This type of approach can
help to keep us on track while creating characters and keep us from getting
too side tracked. One other thought, before we start looking at this process, if
we get stuck on a particular question for a character and just do not know the
answer at the moment, make a note somewhere and come back to it later. The
processes involved in creation are often not the straightest path to a solution.
The creative process can wander at times, and it is OK to do this, as long as we
reel it back in before it goes too far o� track. Recognizing when we are getting
too far o� track is something that takes time and practice to pick up on, for me
when I jump to a new and blank page in my idea book that is a sign that I have
probably gone o� track of the current project. Maybe make a quick note of the
thought that lead us there, but then immediately get back on target.

99

Characters

The �rst question we should address when creating a character is what is
the character’s role in the story or game. If the character is the hero or the
shadow then we are going to need to delve into this character; however, if
the character is some cool quest giver, we thought of that lives on a plywood
platform in a tree, she may not need quite as much depth as the primary
characters do. An interesting thought on this though, is that the more depth
we do give those seemingly bit characters, the more real our game will feel
to the players. But there is a balancing act to this, as the more detail each
character has, the more unique each character is, the more time that must
be spent in creating the graphical assets and programming the interactions
for these characters. Let’s take a look at the other questions that we should
consider for our characters.

During the process of constructing our characters, consider the questions from
Table 4.3. While not all of them need to be answered for each character, the
more that are answered, the more we will know about that character. As you
work on answering the questions and getting to know the character better,
be careful to avoid stereotypes. It may seem like an easy shortcut to use racial,
ethnic, or religious stereotypes. Do not do it. The only good use of stereotypes
would be if it were the goal of your game to be exploring these stereotypes
through the story that you have developed.

Note
Many times when creating games, we will create this wealth of detail and
background that never makes it into the game itself, for various reasons.
This is OK, as it is much better to drop extra detail from a game than to
have a game that lacks detail and depth because we had not considered
such.

100

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 4.3 Basic Character Description Template

Character Description

What is the role in the story/game?

What is the character’s name?

How old is the character?

What does the character look like?

What does the character sound like?

How does the character move?

What careers has the character had? How did they get them?

What knowledge does the character have? How did they get it?

What skills does the character have? How did they get them?

Where is the character from?

What does the character think about the world around them? Why?

What does the character think about themselves? Why?

While creating characters, consider answering the questions for yourself
to get the hang of it. You will notice that while the questions seem
somewhat simple, the answers tend to lead to either new questions or
more information that you had not considered. All of us are a collection of
our life experiences, and how we view the world is directly related to those
experiences.

Consider the possibility of wanting to create a straightforward character
as our hero for an action–adventure type of game. This character will
be a former military member, however, due to the loner nature was
unable to stay within the military for a full career. Rather, the character
left the military and has been living a solitary life on their ranch until a
former�commanding o�cer contacts them for a special mission. Now,
each�of us has a picture of this character in our heads based solely on
these�words that have been used to describe them. But pause for a
moment and consider that image in your head, why do you picture the
character the way that you do? If we could do a show of hands, most
would raise their hands that the character is male, probably muscular,
and most likely over six feet tall. Why? What part of the description from
above stated that the character was male, or muscular, or tall? We realize
that the�description states military so therefore we drew a conclusion that
they�must be muscular, but that is not necessarily the case. What each
one�of us did was to inject our own personal bias into that description,
even though that bias was not actually a part of the description to
begin�with.

This exercise was a very enlightening one for us to consider. At �rst glance,
the description that was provided for the hero character seemed adequate,
but now we recognize that there was so much information left unsaid about
the character, so much information that was left as assumed. It would be
much better for us to take a few minutes and to �esh out the characters, force
ourselves to answer the questions rather than assuming that the other details
were understood. It is best to let your imagine run as you develop characters
for your games early on as it can be extremely di�cult to add new things to
the characters later in the development process. Remember, it is your game,
you have the �nal say on what goes into the game and what does not, but
the more ideas you start with the better. And any ideas not used with this
character may be used with another character inside of the game or even a
di�erent game altogether.

One final thought on character creation before we move on. Even for a bit
character such as a merchant, you can still ask yourself the questions from
the list, though how much detail is provided is entirely up to you. But,
give the character a reason for existing. Give the character a view of the
world. While this may seem somewhat pointless for say a street vendor
character that is just going to be standing there selling random trinkets,
by going through this process you may accidentally discover a cool little
side quest for the story, a cool little snippet to add in to the game and
give it some more flavor. At the same time, if you are planning a game

101

Characters

with many characters, you are going to have to content yourself with
some cookie cutter characters at some point in time; it is just the nature
of the beast.

4.6 Character Asset Design
The process of creating your character assets for use in a game are beyond
the scope of this book, at least in any level of useable detail. However, it is
important for us, as we are learning about the overall processes involved in
the development of games, to consider the steps that would be required
for the creation of these characters. The creation of character assets works
through the following steps: prototype and concept, 3D mesh, animation
sequences, UV unwrapping and texturing, and �nally exporting and
importing the asset.

Working together, the story writer and concept artist will develop an initial
look for the character. This process is extremely �uid as the artist may
be�inspired�by the verbal description of the character or the writer may
become inspired by�the sketches of the character. At any rate, the inspiration
�ows back and�forth and is dependent on a willingness to show initial work
to other people. It is too often that we as creative people are unwilling to let
other people see what we are working on because “it is not �nished.” Showing
un�nished work to other people will oftentimes lead to a fresh take on what we
are developing after the reviewer provides us with some feedback on it. Do not
be afraid to show your work to others; however, there is a di�erence between
constructive criticism and bashing someone’s work. Through this process, a full
sketch of the character will eventually emerge including multiple views so that
the modelers can create the 3D version of the character, see Figure 4.2.

The concept images of the character are handed o� to the modelers to
create a 3D mesh. Depending on the size of the studio, the modeler may
ful�ll multiple roles. Creating the model of the character is not merely
a task of tracing the concept art within a 3D application. The modeler is
responsible for the topology of the object which means that the surfaces

102

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.2 An example of concept art for a character.

of the character must �ow in a �uid and consistent manner such that
when the animation is constructed there will be no tears and distortions
within the model. With the model constructed, there are �nal chances
to make any major tweaks to the appearance of the character, for once
it is animated and textured the base model cannot easily be changed.
Figure 4.3 demonstrates a character model with and without texture maps
applied to it.

Animating a character involves the process of creating a skeletal rig for
the model to hang on. The bones are associated with various parts of
the model through a process referred to as skinning. As the bones are
moved and animation sequences are created, the connected portions
of the model will move and deform with the animation. The animation
sequences can either be stored in one file, such as the case with our
Sancho Panza example, or they may be stored in separate files. At any rate,
it is important to maintain a clear list of what animations are what and in
the case of a single file make sure to list when each animation starts and
ends, Table 4.4 demonstrates the list of animations found in the file for
Sancho Panza.

There are times during the animation process that portions of the model
may need to be tweaked to help smooth out various animation sequences.
Once the mesh is �nalized, it will need to be UV unwrapped. This is the
process of associating X, Y coordinates in a 2D image to X, Y, Z coordinates
within a 3D mesh. The easiest way to think of this is to consider a soda bottle
and to cut the label such that it can be peeled o� of the surface of the bottle.
This label can now be laid �at on a 2D surface and manipulated in whichever
way we might like. However, once the 2D work is complete, the 2D image
can be wrapped back around the 3D mesh to provide a texture for the
object, Figure�4.4 demonstrates a UV unwrap template and the associated
texture map.

103

Characters

FIG 4.3 The Sancho Panza model without texture maps (left), and with the maps (right).

Finally, the model is ready to be brought into the game engine. The FBX �le
format has become the most widely used for exporting and importing �les.
This format can store all the information for the model including the model, the
animations, and the texture maps. Interestingly, Unity can utilize the default �le
format for many modern 3D applications, which makes it appear as though it
would be easier to just stay in the native �le format. The catch to this process is
that Unity will actually convert the �le from the native format to FBX in order to
use it, so once the model is completed, you might as well export as an FBX �le
and bring that into your Unity project. The native �le version of the asset can
also be saved with other native content for the game project.

104

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.4 UV template (left), and a texture map on the template (right), for Sancho Panza.

TABLE 4.4 Animation Frame List for the Sancho Panza Character

Animation Name Start Frame End Frame

idle 0 29

idle1 30 90

idle2 90 150

run-start 150 159

run 160 180

jump-all 185 231

jump-�y 196 210

jump-start-to-�y 185 195

bonk 235 264

boxing 265 285

self-hit 285 310

die 315 355

4.7 Importing Assets in Unity
Bringing assets into a Unity project is a fairly straightforward process. But,
when the asset that you are importing is going to be used as a character or as
a player controlled object, we will need to do some tweaking to it before the
asset will be ready to be used in that sense. Also, if the asset we are importing
will include any animations, then we will need to con�gure those as well. It is
not necessary to con�gure the animations right away, but then again, there is
also no real reason not too (unless we are mass importing a whole bunch of
assets for our level such as doors, windmills, and such).

Download
You can continue with your project from the end of Chapter 3 or use
our scene found in the �nal project package: “Chapter4_part1.” Be
aware that this download is for a Unity package �le which will need to
be imported into your project after you have imported PlayMaker into
your project.

Video
You can view the “Importing Final Project” video on the companion
website for a full demonstration of how the full project package has been
organized and how to use it.

4.7.1 Back to Projects

We are now ready to bring our Sancho Panza character into our game project
that we began in the previous chapter. However, before we start Unity, we
are going to go ahead and rename our project from New Unity Project to
something more meaningful to what we are working on, perhaps Sancho
Panza. To do this browse to the location where your project was created and
stored in the previous chapter and rename the project folder to whatever
name you wish to give this game project, as mentioned, we will be calling
ours Sancho Panza.

Note
The default location on a Windows machine for the Unity projects to
be stored is: C:\Users\<User Name>\Documents\Unity Projects; where
<User Name> would be your user name on the machine. Browsing to the
Documents folder will bring you to the same location.

Now that the project folder has been renamed, we are ready to launch
Unity. Once Unity has initialized, we will be greeted with the project

105

Characters

selection window. Since we just renamed our project from New Unity
Project to Sancho Panza, Unity’s project browser is blank as it is not aware
of any projects that we can open. Click the “Open Other” button near
the top right of the window and browse to where our new Sancho Panza
project is located. It is not necessary to open the Sancho Panza folder,
however, as the whole folder is the project. Rather, just select the folder
and click the Select Folder button in the browser window, as depicted
in Figure 4.5. This is a bit unusual as we are accustomed to that button
being an Open button, which it is, but it is opening a Unity Project, not
an individual �le. So, by looking at the label on the button, Unity is trying
to help us recognize exactly what it is that we are looking for, a folder not
a �le. This is an area where new users to Unity can have some issues; if
you always open your projects through the project browser within Unity,
you will not have any problems. We can follow these steps to rename our
project as many times as we might like.

After Unity loads with our project, go ahead and close it out and restart
it again. This time you will notice that the project browser has been
populated with the project that we just opened and we can easily select
which project it is that we want to work with. Go ahead and select the
Sancho Panza project to let Unity load it once again and we will get
started.

106

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.5 The open project browser, note the Select Folder button and the selected folder, not a �le.

4.7.2 Importing 3D Assets

Browse to the Scenes folder in the Project pane and load the Test Scene that we
built in the previous chapter. You can do this by double-clicking the scene �le
within the Project Pane or by selecting the Test Scene and clicking Open inside
of the Inspector Pane. Once the scene loads, we will save it out as a di�erent �le
name. We are essentially making a copy of this scene, the reason for this is that
we will not be needing the Sphere object in the scene any longer; however, it
might be nice to hold on to this test scene in case we want to be able to come
back and reference it at some point in the future. Save the scene as “Character
Test” using the save scene as dialogue found in the File menu; make sure to
save it in the Scenes directory as well so that it will be easy to �nd again.

Select the Sphere object from the Hierarchy pane and delete it so that we
are left with the cubes, the ground, the camera, and the light. This will serve
as our test bed for getting our character working in our game and moving
around correctly. This is a very good practice to get started as you develop
games. Create scenes that you can use for testing basic components
and basic interactivity before dropping those objects into the full game.
By�following this technique, if you have tested your object’s behavior by
itself and it worked, then any problems you have are going to be in how the
object is interacting with the scene, at least generally speaking, and this
can help you to troubleshoot bugs during your development.

Download
Get the “Knight.zip” �le from the companion website and unzip the
�le on your local machine in order to have the necessary �les for the
upcoming sections.

Importing assets into Unity can be done through three di�erent methods.
The �rst method is to drag the object being imported from a �le explorer
outside of Unity and drop it into the Project pane. The second option is to
select Assets on the Menu bar followed by the Import New Asset option.
The third method for getting assets into Unity is actually outside of Unity
itself, simply move the �les into the Assets directory of your project’s folder
and the next time you launch Unity with that project, the new assets will be
imported. Make sure to get the CH4–Knight.zip �le found on the companion
website for this book. This �le contains an FBX version of the knight character
with animations as well as two texture maps, which we will use and a text
�le documenting the animation list as seen in Table 4.4. Once the �le has
been downloaded, begin by unzipping the �le, on Windows this can be
accomplished by right-clicking on the �le and selecting Extract Here on a
Mac you can double-click the zip �le and drag the contents out into a new
location. You will be prompted with a dialogue where you want the �le to be
extracted; the default location is wherever you have the �le stored currently,

107

Characters

so that will work just �ne. After waiting a few moments, the �le should be
extracted and we should have a directory structure similar to Figure 4.6. With
the �le extracted, we are ready to get the knight, Sancho Panza, into our
game project, the steps are outline below.

 1. Select the Assets folder within the Project pane.
 2. Click the Create drop-down list and select Folder to create a new

folder within the Assets folder of the project.
 3. Change the name of the folder to Sancho.
 4. Double-click the newly created Sancho folder so that the Project pane

depicts the contents of that folder, as seen in Figure 4.7.
 5. Now we will add all of the �les from the uncompressed knight �le into

this folder, to complete this do any of the following:
 a. Select all four of the �les from the “Knight.zip” �le inside of your

explorer window and drag them onto the open Sancho folder in
the Project pane.

 b. Right-click in the open Sancho folder and select Import New Asset
 i. Browse to the location where the �les are stored and select all

of the �les.
 ii. Click the Import button.
 c. Click Assets on the Menu bar and select Import New Asset from

the drop-down list:
 i. Browse to the location where the �les are stored and select all

of the �les.
 ii. Click the Import button.

108

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.6 Folder view of the extracted contents from the “Knight.zip” archive �le.

Note
Assets can also be imported into a project through the Asset store as was
discussed in the previous chapter when importing the PlayMaker plugin
originally. Remember, anything that is within a project is an asset.

The knight asset has now been imported into our Unity project, and the
Sancho folder should now resemble the one depicted in Figure 4.8. Note that
a new folder was created named Materials. Unity created a default material

109

Characters

FIG 4.7 Contents of the newly created Sancho folder inside of the Project pane.

FIG 4.8 New �les have been created within the Sancho folder during the import process including children
objects of the parent Knight object.

to be applied to our knight character and saved it within this Materials folder.
We are not going to do anything with the default material that was created,
as it will work �ne for us, at least for now.

Note
When Unity creates Materials for meshes, it does so based upon the
material that was created within the modeling application and saved
within the FBX �le.

Video
On the o� chance that Unity incorrectly interprets the type of texture �le
that we are using when importing your assets, take a look at the “Fixing
Textures” video on the companion website to correct this problem.

The other thing that we should notice is that the Knight object has a little
triangle next to it. This is because the Knight object has several sub-objects
or children that are attached to it and wherever it goes they go with it. We are
going to go ahead and look at each of these children so that we understand
what is within this particular asset. Di�erent meshes, when imported, will
contain di�erent children depending on the construction of the actual
object. If we click the triangle next to the Knight object, we can see that
it will expand to reveal the contents depicted in Figure 4.8. The �rst two
children, Knight and Pads, are the completed models for our character. The
Knight model contains the bulk of the character, and the Pads contain the
extra armor located at his elbows. If you select either one of these, you will
see in the Inspector panel that this object contains the required Transform
component as well as a Skinned Mesh Renderer and Material component.
The Skinned Mesh Renderer component is used to assign a mesh, 3D object,
to the Game Object, and the Material component will assign a Material.

The next two children of the Knight object are also called Knight and Pads.
However, these two are the meshes themselves; these are the geometry that
de�nes the shape of each of those objects. Clicking on either one of those
will not reveal very much in the Inspector, because there is really nothing
that we can do with these things other than assign them to Skinned Mesh
Renderer components. Do notice, though, in the bottom of the Inspector
pane, that we have a preview of these meshes as well as some information
about them: vertex count, triangle count, and modi�ers applied to the mesh
(in this case, a UV modi�er and a skin modi�er).

Moving down to the last two children, the �rst one, C4D Animation Take,
is the animation clip currently in the list of animations for this object.
At the moment, this child contains all of the animation information that
Sancho will need in order to animate within our game world. However,
when we have �nished with this section, all of the animation clips listed in

110

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Table 4.4 will be displayed as children of the Knight object. The �nal child,
KnightAvatar, is created by the Unity animation system and is something
that we will be getting rid of shortly. The avatar objects that are created are
used by the MechAnim animation system within Unity; we, however, will be
using the Legacy animation system for this project. The MechAnim system
is a wonderful tool for managing an object’s animations within Unity, but
not all objects are easily compatible with it and this Knight character is one
such object.

Note
There will be many times during your indie and hobby game
development projects that you will be using free or purchased assets
from other sources. Those assets may or may not be compatible with
Unity’s MechAnim system.

4.7.3 Settings for Imported 3D Assets

Now that we have our character imported into Unity, we are ready to �nalize
some of the options and move on to bringing the character to life. Select the
parent Knight object, the one with the triangle next to it, and we will begin
with the Inspector properties for this object. There are three tabs: Model,
Rig, and Animations. We will start with the easiest of these, the Rig tab. After
selecting the Rig tab, we have a series of drop-down menus as depicted in
Figure 4.9. If we click on the �rst drop down for Animation Type, we will be
greeted with four di�erent options. It is important that we be aware of these
options as they de�ne the type of animated object that Unity thinks this is.
The �rst option is None that would be for any object that does not have any
animations, such as a wall or maybe table. The next option is Legacy which
we would use for any object that has animations with it but does not or
cannot use the new MechAnim system of Unity. Our Sancho guy is going to
be a Legacy Animation Type, so you can go ahead and select that. The last
two options, Generic and Humanoid, are both for the MechAnim system
which we will not be covering in this book, but those that are interested can
�nd more information from the Unity manual on this topic at http://docs.
unity3d.com/Manual/MecanimAnimationSystem.html. For now, however,
select Legacy from the Animation Type drop down and click the apply
button, the Knight character will re-import with those settings and notice
that the KnightAvatar child object will be gone.

Note
Just because an object does not have any animations, does not mean
that it cannot be moved around or interacted with within the game
world by characters. In fact, we could build our own animations for
objects directly within Unity using the Animation window.

111

Characters

For our next step of con�guration, we are going to have to drop Sancho into
the test world and get him sized up. Go ahead and place the Sancho character
into the test scene and position him such that his feet are touching the ground
object. In this particular scene, the only frame of reference that we have are the
cubes that we had placed out in the world. We really do not know if Sancho is
scaled to the correct size or not at this point in time. This is signi�cant, because
when dealing with an animated character or animated asset in general, we do
not want to use the scaling tools to resize them as we did in the previous chapter.
The scaling tool will work �ne for any non-animated objects; however, if the
object has built-in animations, then we run the risk of breaking the animations
within them by scaling them up, or down for that matter. Therefore, to resize
an animated object, we need to con�gure its Scale Factor within the Inspector
pane. To access this feature, select the Knight parent object within the Project
pane and switch the Inspector tab to the Model settings. Figure 4.10 displays
some of the settings that are found within this tab. The �rst option is the Scale
Factor for the model, we can modify this value to a di�erent amount to alter how
big or small it is within the scenes that it is involved in. By resizing through the
scale factor, we resize all of the sub-components with it as opposed to scaling
one part and not the others. Try experimenting with di�erent scale factors by
entering a new value and clicking the Apply button in the bottom right portion
of the Inspector pane, it may be necessary to scroll down to see it.

While we can go ahead and scale Sancho to match the cubes in the scene or
to match some other preconceived notion of how large or small the character
should be, we will not really know if we have the right size or not. We have
two approaches to solving this, either import some other meshes that we will
be using for constructing the level later and set Sancho relative to them, or

112

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.9 Rig options for a 3D asset imported to Unity.

we could, just leave Sancho alone for now and come back to scale him later
once we have built a world for him to better interact with. At this time, we
will�take option number two and move on with the other features that we
can adjust within the Model section.

Note
When using assets created by others, it is very rare that they will all scale
together correctly, as we will encounter over the course of this project. This
is OK as it can easily be adjusted through the Scale Factor of each object.

113

Characters

FIG 4.10 Settings available within the Model tab for a 3D imported asset.

We have a fairly long list of options that are available to us; however, there are
really only two that we are interested in understanding at this point in time,
aside from the Scale Factor. These options are the Generate Colliders and
Import Materials tick boxes. If we turn Generate Colliders on, Unity will apply
a Mesh Collider component to the object. Remember from the discussion
in the previous chapter that Mesh Colliders are expensive. Though they are
quick and easy to use, they may cause performance problems as the project
continues to grow and could de�nitely be a lazy habit for us to get formed
early in our game development careers. By default, this option is turned o�
and we will keep it turned o�. But, if we wanted to generate colliders for
our meshes, we could turn this option on here. The primary advantage to
doing that in the Model section as opposed to simply added a Mesh Collider
component to the object through its Inspector Pane, is that we may have a
large number of assets that we want to apply Mesh Colliders to. Therefore, we
could select all of the objects within the Project Pane and within the Model
tab for them turn on Generate Colliders, and they will all get Mesh Colliders
constructed for them. One example use for this would be if we had a large
number of concave type objects, cave entrances or overhangs, we could
generate the colliders for all of them through this technique.

Note
While the Mesh Colliders are wonderful to use and can make some
things much easier for us, we would be much better served, long term,
to create custom colliders inside of our 3D application and apply them to
the object instead, this way we could control the triangle count of these
colliders, alas that is a topic for another day.

The other option that we want to take a very quick look at is the Import Materials
option. As we mentioned earlier, Unity will import the materials that were created
and applied to the object in the 3D application. Why, then, you may wonder,
would anyone ever want to not automatically import the materials. There are a
couple of reasons that you may want to turn this feature o�, it is on by default.
The �rst would be that the object did not actually have any Materials created for
it in the other application; in which case, the material that will be created by Unity
will be named Default and have a basic color applied to the di�use channel,
the albedo channel in the new physically based rendering system of Unity 5.
The other is that the material created within the 3D application by whoever did
it, was not named appropriately and when it gets imported we end up with a
bunch of materials with random numbers in their names, something like Material
#24. While we can go back and manually �x these material issues once they are
brought in to Unity, if we are going to have to be doing a fair amount of tweaking
to materials then it might be bene�cial to us to just go ahead and not import
them and create them manually within Unity.

The last section that we are going to look at and con�gure is the
Animations tab for the Knight object. The full view of this tab can be seen�in

114

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Figure 4.11. Before con�guring our list of animations, take a moment to
resize the Inspector pane a little bit, I would especially recommend resizing
the animation preview pane that is at the bottom of the display so that you
will be able to see Sancho moving better and detect any hiccups in the
animations. All of the top default options in this section are �ne to leave as
they are, the Import Animation toggle would essentially turn this tabbed
section on or o�. We will come to the Wrap mode drop-down selection
again in just a few moments when we start to break this animation into
individual pieces. The other settings in the top portion deal with the
compression for the animation. Compression is accomplished by removing

115

Characters

FIG 4.11 Animations tab for an imported 3D asset.

redundant frames from the animation. This can be accomplished through
Keyframe Reduction in which Unity will try to locate these frames that have
very similar data and remove the duplicate frames, this default setting will
work just �ne for us. The error tolerance settings are values that we can
adjust that Unity will use in order to determine if two keyframes are similar
or not. For instance, the Position Error will look at two keyframes and if the
di�erence in position is less than 0.5% (0.5 being the default value), Unity
will consider those two keyframes to be the same as far as the compression
system is concerned.

The portion that we are interested in modifying is in the clips section,
which has been highlighted in Figure 4.11. By default, all of the animations
that were in the animation clip have been imported as one sequence and
we can see that it starts at Frame 0 and ends at frame 355. To preview this
animation sequence, we can press the play button in the top left corner of
the animation preview pane and Sancho will begin to run through all of
these animations as though they were one clip, which essentially they are.
We can slow down, or speed up, the playback of these animations by moving
the time slider that is in the top right corner of the preview pane, the default
setting is 1.00.

Note
When adjusting your animation clips within Unity, do not forget the
option of slowing down the playback as this can help you to �nd hiccups
and wrapping problems in the animation so that you can �x them by
adjusting the start and/or ending frames for the sequence.

Before we begin setting up the animation sequences for Sancho Panza,
we will look at the options that go with the process. Figure 4.12 provides
a closer view of the Clips section that we are going to be working with.
The clips section along the top, lists all of the clips that have been created
and assigned to this particular object, currently there is one clip. To the
bottom right of that section there is a “+” and “�” which will allow us to add
a new clip to our animation set or to remove the currently selected clip
from the animation list. Next down is the textbox that lists the name of the
clip; by clicking within this textbox, we can enter a new name for the clip.
The timeline that follows shows the length of the clip in seconds with two
textboxes underneath it. The box to the left is the starting frame for the
animation, and the ending frame is the box to the right. We can click within
these boxes to enter whatever values we may want, but generally the values
will come from an animation list like the one we looked at in Table 4.4. The
Add Loop Frame toggle will have Unity create an extra frame at the end of
the animation for looping purposes. This added keyframe would be the exact
same as that at the start of the animation. The Wrap Mode drop down allows
for the selection of the di�erent types of looping that we can apply to the
animation, a full discussion of these options is available in Table 4.5.

116

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Note
If you are unable to alter the start and end frame for an animation
clip with an asset, there should be a button labeled “Clamp” directly
underneath the timeline, click that button and you will now be able to
alter those starting and ending frame numbers.

117

Characters

FIG 4.12 Clip creation and setting options.

TABLE 4.5 Wrapping Modes Available to the Legacy Animation System

Wrap Mode Purpose

Default This setting will use the Wrap Mode that was set for the whole animation sequence
at the top of the tab. It may be useful to set the default Wrap Mode to Loop if you
know that most of your animations will need to loop.

Once This will play the animation through one time and then stop, it is similar to Clamp
Forever, however with Once, the animation has stopped playing.

Loop When the last frame of the animation is reached, Unity will start back over at the �rst
frame and keep playing the animation in a loop forever.

Ping-Pong When the last frame of the animation is reached, Unity will play the animation
backward back to the �rst frame of animation then turn around and play it forward
again, continuing this process inde�nitely.

Clamp Forever When Unity reaches the last frame of the animation it will continue to play that last
frame forever, in appearance this will look the same as Once, but Unity is playing an
animation here, with Once it is not.

Now that we have an understanding of these options, we will go ahead and
start chopping up the animation sequence into the clips that we need and
get them ready to go for Sancho.

 1. Review the animation listing found in Table 4.4.
 2. Select the textbox that currently lists “C4D Animation Take” as the

name of the animation.
 3. Change the clips name to “idle” press the Enter key to set this new

value.
 4. Since this idle animation starts at Frame 0 we will leave the starting

frame alone.
 5. Select the textbox for the End Frame, currently it reads “355” change

this value to “29.”
 6. Select the Wrap Mode drop-down list and use the Loop Wrap Mode

so that while this animation is playing it will always loop it.
 7. Click the “+” button to add a new clip to the animation list.
 a. Repeat from Step 2 using the names and values from the listing in

Table 4.4.
 8. Click the Apply button once all animations have been entered.

After following these steps, your Clips section should now match the
depiction in Figure 4.13. As these animations were entered into the list, we
needed to consider the Wrap Mode for each one. As it turns out, not all of the
animations should Loop. Consider the animation name “die.” We can imagine
when this animation is going to be played; it will be when the character has
been killed by something or someone. If we have this animation set to loop,
then the character will fall over backward, dead, suddenly shoot back up to a
standing position and fall over backward dead again. Rather, this animation
should only play through with a Wrap Mode of Once or Clamp Forever. For
our version, we have used once as the Wrap Mode for these, a full list of the
Wrap Modes for each animation is found in Table 4.6.

Note
The wrap mode is one of the most overlooked animation settings.�If your
character’s idle plays only once when the game starts, for instance, before
debugging any scripts that you may have developed, take a look at the
Wrap Mode setting for that clip and ensure that it is on�Loop.

We now have all of the animation clips con�gured within our list of animations
for Sancho Panza. In fact, if we select the Knight object from within the
Hierarchy pane, the Knight that is in the scene, we will notice that he has an
Animation component within the inspector and that if we click the triangle
next to Animations, we will �nd the full list of animations that have been
created and applied to this object (see Figure 4.14). This list of animations is an
Array, an interesting method of storing information that we will return to later,

118

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

that we can modify from here if we wanted to, though generally we do not
want to alter it. The Play Automatically toggle means that the �rst animation
in our list of animations will automatically play when this object is created in
our game world, or not if we have the toggle turned o�. For now, we will leave
it turned on and start our game by pressing the Play button. We should see

119

Characters

TABLE 4.6 List of Wrap Modes for Each Animation

Animation Name Wrap Mode

idle Loop

idle1 Loop

idle2 Loop

run-start Once

run Loop

jump-all Once

jump-�y Once

jump-start-to-�y Once

bonk Once

boxing Once

self-hit Once

die Once

FIG 4.13 Clip list after the sequence has been cut based on the listing in Table 4.4.

Sancho Panza standing in our game world with his shoulders rising and falling
as he breathes the virtual air that surrounds him, idling his time away.

Note
While setting up your animation clips, take the time to watch looping
animations play through their loops a couple of times before moving
on. If the animation appears to jerk or sputter at the looping point, try
adjusting the ending frame back or the starting frame up until you can
get that transition to smooth out.

4.7.4 From 3D Assets to Player Controllable Assets

Sancho is out in our test world and appears to be quite happy with his new
state of life. However, before he will be ready to become a controllable

120

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.14 Inspector Pane for the Knight object within the Scene after the animation list has been created.

character, we need to add some things to the Game Object. The �rst of these
components will be a Character Controller. This Unity component adds the
functionality for us to be able to, well, control the character. We attach a
Character Controller component, not script, to any Game Object that we
want players to be able to control. It will provide some core elements for our
character such as a collider; of course, we can still add more colliders to our
character for other uses if we need to. The Character Controller is found in
the Physics section of our components, so to add a Character Controller to
Sancho: select the Add Component button followed by Physics and Character
Controller. The new component has been added to our object as can be seen
in Figure 4.15. The properties of this controller are going to give our character
her base characteristics for movement, and Table 4.7 provides a breakdown
of each of these properties. We will need to return to these settings and
tweak them during testing as we progress, but for now adjust the height and
radius of the controller such that Sancho �ts nice and snugly within it.

During this process, it will also be necessary to move the Y value of the center
property up some so that the center of the controller is not on the ground
between Sancho’s feet. For our version, we have set some initial values of:
Center Y = 0.27, Radius = 0.2, Height = 0.55. It is nearly guaranteed that we
will need to adjust these values later, but we need to start somewhere.

Our next change will be a very subtle one, but vital nonetheless. Currently,
Sancho automatically plays an animation when the game starts; we need
to turn that o� so that the controller system that we build will be entirely in
charge of any animations that are played, including the starting animation.

121

Characters

FIG 4.15 Character Controller component added to our Sancho character.

In the Animation component, click the tick box for Play Automatically to
turn that functionality o�. While this was not entirely necessary, it will be
encouraging for us as we implement our controller to see Sancho animate
and know that he is doing so as a result of our state machine.

The �nal change we would like to make to our character is to go ahead and
change the tag from “Untagged” to “Player.” Player is one of the default tags
that can be used and applied, and we can select it from the Tag drop-down
menu directly beneath the name of the Game Object in the Inspector
panel. Using tags is very important for processing and responding to any
collision events between Game Objects. Sancho is now ready to become a
playable character.

4.8 Character Control Systems
with PlayMaker

Once the character asset has been imported into Unity and the
animations have been configured the way that we want, we are ready to
bring the character to life. We are going to split this section into three
distinct parts that will be needed for this process. To provide life to a
player controlled character, we will first need to determine exactly what
we want the player to be able to do. By this we mean, what controls will
the player have and how do we ultimately want the character to respond
to these controls. It is possible to have a couple of ideas that we do not
implement just yet, such as having the character die as other pieces will
need to be in place in order for that to function correctly. But at this
stage, we should definitely know the basic functionality that is going to
be provided which we should be able to derive from our previous work
in designing the character. Once we know what it is that we want to get

122

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 4.7 Properties of the Character Controller Component

Property Name Use of Property

Slope Limit Character will only be able to move along sloped surfaces that have a slope angle
less than this value.

Step O�set When encountering stairs, character will only move up the stair if the height of the
stair’s step is less than this value.

Skin Width Determine the thickness of the collider part of the controller. A low value could
mean that the player can “see through” any walls that they collide with. De�nitely a
property to tweak if odd collision behavior occurs.

Minimum Move
Distance

In order for the character to move within the scene, the player must be trying to
move it further than this value.

Center This is the center position of the collider part of the controller.

Radius How wide the collider part of the controller is.

Height How tall the collider part of the controller is.

from the player, for instance maybe the “W” key on the keyboard will
move the character forward; then we just need to understand how to
get that information from the player. Specifically, how will Unity know
when the player has done such and such. Our final step, after grabbing
the input from the player, will be to assign the actual functionality to the
character, which we will do through some state machines created within
PlayMaker.

Download
The �nal project package with the imported and con�gured Sancho Panza
asset can be obtained from the companion website and found in the
scene: “Chapter4_part2.” Remember, this is a Unity package �le to import
and will require that PlayMaker is already imported into your project.

4.8.1 Designing the Character Response System

Since we are building a third-person, platformer-style, action–adventure
game, we have an idea of the controls and functionality that we want to
assign to our player character, Sancho Panza, based upon what is expected
within this genre. Essentially, we want the character to be able to perform the
following actions:

• Move forward and backward by walking and/or running
• Turn or rotate left and right
• Jump
• Attack bad things to defend itself
• Be hurt by bad things that might attack it
• Die after it has gotten hurt too much
• Pick up and collect items found within the game world

That is a good list for getting started and after having that basic
functionality in place we can always add more later if we need to for some
reason. Now that we have the basic actions �gured out, we need to tie these
character actions into some kind of event that occurs within the game world.
Remember from our previous chapter that an event also means a transition
within a state machine and that an action is something performed while in a
speci�c state. Hopefully, you can already begin to picture how we are going
to be able to construct an elemental state machine based on the events
that we want associated with the actions that we want. We will now add
some events to the list of actions that we have already formulated above,
keep in mind that at this point we are still keeping our actions fairly generic;
we will break them down into more detail in the next step. We also are not
concerned with how to get the computer to do what we want; we are just
trying to formulate what it is that we will want to happen. For now, we are

123

Characters

going to follow typical control structures for third-person or �rst-person
action-type games on the PC.

• Player presses the “W” key on the keyboard
• Sancho will move forward

• Player presses the “S” key on the keyboard
• Sancho will move backward

• Player moves the mouse to the right
• Sancho will rotate or turn to the right

• Player moves the mouse to the left
• Sancho will rotate or turn to the left

• Player presses the space bar
• Sancho will jump

• Player presses the left mouse button
• Sancho will do a primary attack

• Player presses right mouse button
• Sancho will do a secondary attack

• Player does not avoid some bad thing in the game world
• Sancho gets hurt

• Player lets Sancho’s health get to 0
• Sancho will die

• Player moves Sancho over a collectible item
• Sancho will collect the item

Note
Any action that the player character is going to be able to perform should
have some animation associated with it so that the player can see the
character doing the action. There are exceptions to this, but this is a solid
general rule to follow. This rule, taken to its conclusion, means that if we
do not have a suitable animation, then the character should not do it.

While the list of activities that we want Sancho to be able to perform may not
appear to be that much, it will be more than enough to keep us busy for the
next few minutes or longer. Notice that some of these events really do not have
anything to do with the player directly, speci�cally, when Sancho gets hurt,
dies, or collects something. Sure, they are a consequence of the player’s actions
or inactions, but more importantly they are the direct result of events occurring
within the game world speci�cally. For instance, in order to collect something,
there has to be something in the game world to collect and Sancho has to
run up to it. We are currently only working on the player controller mechanics
of Sancho Panza, so some of what we have in our state machine list can be
dropped for a later topic, such as after we add some objects into the game
world. Another thing to consider on this is that until Sancho can move around,
we do not need to worry about whether he can collect things or not.

124

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Note
Always take things slowly and one step at a time. Build up any behaviors
that are being created from the ground up, do not try to build everything
in one go, add pieces to your state machines little by little and test them
to make sure they work as expected. This approach breaks the problem
down into smaller problems which are easier to solve and troubleshoot.

We have one more state machine list to build. This last list is going to dive into
the details of what Sancho is doing with more speci�cs. By this we mean that
we are going to break Sancho’s generic actions down into individual and more
speci�c actions. Do not worry about what the proper PlayMaker actions are or
how to do this in Unity. Our �rst step is always to make sure that we understand
what it is that we want to happen, make sure that we can explain what we want
step by step in plain English before we ever try to convince the computer to
do anything. If we do not fully understand what we want, then it is going to
be very di�cult to create a state machine that will work correctly. So, our next
state machine list, will break these actions out a little bit and will also drop the
actions that we are not worried about just yet, instead we will focus solely on
the direct input events from the player and the responsive actions of Sancho.

• Player presses the “W” key on the keyboard
• Sancho will move forward
• Play a walk/run animation (run)
• Have the camera follow the character

• Player presses the “S” key on the keyboard
• Sancho will move backward
• Play a backward walk/run animation (run)
• Have the camera follow

• Player moves the mouse to the right
• Sancho will rotate or turn to the right
• Spin the camera to keep perspective

• Player moves the mouse to the left
• Sancho will rotate or turn to the left
• Spin the camera to keep proper view

• Player presses the space bar
• Sancho will move vertically up in the air
• If Sancho is moving forward/backward that motion will continue

as well
• Play an animation for jumping (jump-start-to-�y)
• Camera follows Sancho

• Player presses the left mouse button
• Sancho will continue whatever motion he is doing
• Sancho will play primary attack animation (boxing)

• Player presses right mouse button
• Sancho will continue his current motion
• Sancho will play secondary attack animation (bonk)

125

Characters

4.8.2 Getting Input through Unity

There are two di�erent methods for getting input from the player. The �rst is
to put the speci�c key and button presses that we are looking for directly into
the state machines that we create for the character controller. This seems like
a reasonable approach, however, if we later decide that we want to change
those keys and buttons to something else, we will have to come into our
state machines and change all of them to the new buttons. Another thing
to consider with this approach is that if we were to add secondary control
mechanisms, for instance, the left thumb stick of a game controller for
forward and backward motion, we will have to add those input sources into
our state machines. Unity, however, provides a better mechanism by which
we can grab the input from the user, this is called the Input Manager, and it is
a wonderful tool for abstracting our state machines from the actual buttons
and keys that the user presses.

To access the Input Manager, click Edit from the Menu Bar and scroll down to
Project Settings then select Input from the pop-out choices. At �rst, it may
appear as though nothing has happened; however, if we look at the Inspector
pane, we will notice that it has changed to display the properties of the
currently selected object, in this case the Input Manager. Click the triangle to
the left of Axes to open up the default input con�guration. Notice that the
�rst item is Size and is set to a value of 18. The size indicates how many inputs
we are allowing or using within our project. By entering a higher number,
we can add more inputs to our project and the new ones added will be
duplicates of the �nal item in the list, in this case Cancel. Lowering the value
will remove current input axes from the list dropping the list down to the
value speci�ed. We are going to leave ours set at the default value of 18.

There are two major types of inputs that the Input Manager can track for us.
The �rst is axis movement, such as that of the mouse or game controller thumb
stick. Buttons and keys can also be assigned to the axis movement as we will
be doing with the “W” and “S” keys for our forward and backward motion. The
other type of input is a button press or click. The di�erence between these
two is that the buttons can either be pressed or not pressed, those are the
only values that we can get from a button. Axis movement, on the other hand,
can have a range of values from not pressed to fully pressed in one direction.
Consider an example of a typical �rst-person shooter on a console, your
character will move faster or slower depending on the amount of pressure that
you apply to the thumb stick governing the character’s movement, Unity can
measure this pressure through the axis input system. Within the Input Manager
itself, there is no di�erence between these two types; the di�erence will be in
how we grab the inputs within our state machines.

4.8.3 Building State Machines in PlayMaker

Notice that the process of getting our character control system did not begin
with PlayMaker. As we stressed previously, it is vitally important to make sure
that we have a clear understanding of what it is we want the computer to do

126

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

way before we ever try to tell the computer to do it. When creating our initial
state machines, do not worry about what the speci�c action or event will
be for a speci�c state or transition. We can �gure those out later, and as we
will discover many times, the actual action is very similar to the plain English
that we had used to describe it. In fact, after doing some work within Unity,
you will �nd that your plain English state machines will begin to incorporate
the actual actions to be used; the di�erences will be in the values of the
properties for the actions, as we may not recall those o� of the top of our
head. Doing this, having a state machine with partially correct actions in it, is
developing with pseudo code. That means, we are creating a state machine
that is very similar to the one we will actually build within PlayMaker. It is
close enough, actually, that we will not have to do too much work to it when
we do get inside of PlayMaker, this will come with practice and time.

4.8.3.1 Moving Sancho
With our design work out of the way, we are ready to get our character doing
what it should. It is at this point that one may wonder why we do not just use
the built-in third-person character controller system that comes with Unity
and that we noticed in the last chapter when we looked at the Standard
Asset packages that are available. The reason that we will not be starting with
that asset is twofold. The �rst being that the controller is controlled by C#
scripts. In order for us to be able to make any changes or tweaks or additions
to it, we would have to understand C# scripting which we currently do not.
This leads us to the second issue. A common mistake made when learning
game development is to go grab someone else’s work under the idea that
we can make modi�cations to it and through those modi�cations learn how
to make a game. While in theory this sounds very reasonable, in practice
the reality is that in order to make modi�cations to the work of others, we
need to understand what it is that they did and built. If we do understand
how they built their game, then we are not at the starting point of learning
to make games, we are at a point of already knowing how to make games.
This, essentially, is a situation of the chicken and the egg, in order to modify
someone else’s developed code we need to know how to write and read code
in which case we could have written the code ourselves and are not as reliant
on others developing code for us to modify. So, we will be creating a character
controller system from the ground up and learn how to create our own stu�.

It is now time to open the PlayMaker editor window by selecting PlayMaker
and PlayMaker Editor from the Toolbar. Before we add a state machine to
anything, make sure that the knight object is selected within the Hierarchy
panel and not the Project panel. Now we can go ahead and right-click within
the PlayMaker Editor window to add a �nite state machine (FSM) to our
knight Game Object. Select the FSM tab along the top of the Properties pane
of this FSM and provide a description for it as well as changing the name
to something more meaningful. This may seem like a silly thing to do, but
getting into the habit early of naming things descriptively and then providing
comments explaining what they are will pay huge dividends for us later. We
will name�this particular FSM “Movement” as seen in Figure 4.16.

127

Characters

We now return to the State tab to rename any states we add to this machine
and to add actions to them as well. Returning to our descriptive state machine
we developed earlier, we can see that as far as movement is considered, our
character can move forward and backward. Turning is not really movement in
that same sense. Just as we broke our steps down to be able to create a well-
de�ned list of actions, we also need to look at our state machine list and decide
if we have more than one state machine or not. As it turns out, we actually
have several within this controller that we are constructing. We will need state
machines that will govern: movement, turning, actions (left and right mouse
buttons), and probably something else to handle him getting hurt and dying
eventually. Try to make your state machines responsible for certain things, not
necessarily responsible for everything. With that said, if we were building a
controller for Pac-Man, we would not want di�erent machines for the vertical
and horizontal movement. All of the movement can be put into one machine.
As we start making state machines, it will be di�cult to immediately recognize
when we should move to a new machine or not, however, as you work on your
projects, if you reach a point where your transitions are becoming a tangled
mass of spaghetti because all of the states can go to all of the other states, you
may want to consider �nding a logical separation and moving some stu� to
another state�machine.

Back to movement. So, our character can do two things in this machine, he can
move forward and he can move backward. But there is also a third thing that we
did not even consider when we built our state machine list earlier. This third thing
is that Sancho cannot move at all; he can actually just stand there and idle away
his time in the world. We now have three states for this machine. We are going

128

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.16 A renamed and described state machine.

to go ahead and build our �rst state, which will be the idle state. Inside of this
state, Sancho will not move, but he will play one of his idle animations; in fact, we
will allow him to randomly select one of them to do then he will just stand there
and do it. Begin by changing the state name to Idle then add the “Play Random
Animation” action to this state. A couple of new properties here with this state
which we have described in Table 4.8. Go ahead and con�gure this action as
depicted in Figure 4.17. In order to select which animation we want to play, just
use the arrow icon button to the right of the text box for�the animation name.

129

Characters

TABLE 4.8 Properties for the Play Random Animation Action

Property Name Use of Property

Animations List of animations that can be selected. This value should be set to the total
number of animations that are available. Once that is done, specify each
animation by name, from the drop-down list, and also provide a relative weight
for how often it will be selected.

Play Mode Once we start playing an animation, what should we do with any others that were
playing, generally we will want to stop all other animations that were playing.

Blend Time How long will the system spend blending the old animation with the new
animation during the transition between the two.

Finish Event What event should be �red when we �nish playing an animation.

Loop Event What event should be �red when we begin looping an animation.

Stop On Exit When we do exit this state, should we stop playing our animations.

FIG 4.17 Final con�guration for the Play Random Animation action.

At this point, we could go ahead and test this, but before we do, let’s
go ahead and get these idle animations to toggle back and forth from
time to time. Currently, this animation system will randomly pick one of
those three animations to play when we enter this state. But once we are
within this state, it will keep playing whatever animation it was that it had
randomly selected. So, what we need to do is to exit this state whenever
the animations end or loop and restart the state. We can do this by adding a
default FINISHED event to the Idle state. Right-click on the Idle state within
the Editor view port. From the pop-out menu, select Transition Event and
FINISHED. Finally, left-click on this newly added FINISHED event and drag
it up to Idle, such that the arrow loops back on its own state as depicted
in Figure 4.18. With our looping structure in place, go ahead and add the
FINISHED event from the drop down for both the Finish Event and Loop
Event properties. A quick play test of this reveals that Sancho stands there
and every now and then plays a di�erent idle animation. We could get fancy
at some point and have the hand wave play when he turns to look at the
camera (the player) and waves at them, but that is not a �rst run through on
this controller system. We will save that for some tweaking later.

Sancho is now ready to actually run around and respond to the input from
the player. The �rst step is to create some custom events. From the Events
tab, we will enter the names of our new events in the Add Event text box
(Figure 4.19). Currently, we are going to add two events, Forward and
Backward. With the events created go ahead and add these new transitions
to the Idle state. Once we add these new transitions, there will be a red
exclamation point on the state. This lets us know that the state contains
transition Events that do not actually transition anywhere. It will go away as
we build the rest of the state machine.

We will now add a new state to our machine and name this new state Move
Forward. Connect the Forward transition event from the Idle state to the

130

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.18 FINISHED event looping back to the Idle state.

newly created Move Forward state. Go ahead and repeat this for the Move
Backward state as well so that we no longer have any errors in our state
machine. What we need to do next is to add an action to our Idle state that
will be listening for any input from the Player that Unity will send us from the
Input Manager and properly respond to it.

 1. Select the Idle state
 a. From the Action Browser �nd the Axis Event action and add it
 b. Remove the Horizontal axis name, our movement is only forward/

backward and we will use the Vertical axis for determining that.
Horizontal axis will be used later for rotation.

 c. From the drop-down menu for Up Event select Forward
 d. From the drop-down menu for the Down Event select Backward

Our Idle state is now responding to the input that is being passed to it, but
our Forward and Backward states are not actually doing anything. It turns
out that both of these states are very similar, so, if we build one of them and

131

Characters

FIG 4.19 The Add Event textbox.

get it working, we should be able to just copy the actions over to the other
state and with a few minor �xes have it working as well. As a result, we will
focus on our Move Forward state and get it working �rst. There are a few
things that we are going to have to do within this state, as we mentioned
in our State Machine list from earlier. Sancho is going to have to move
forward, play an animation, have the camera follow him, and we now also
realize that Sancho is going to have to recognize when the player no longer
wants to move forward and return to the Idle state. We will run through
these steps real quick and then come back and take a closer look at the new
pieces that we are using. Figure 4.20 displays the �nal version of the Actions
within the Move Forward state.

 1. Create a new event called Stop
 2. Add this new event to the Move Forward state
 3. Connect the Stop transition event to the Idle state
 4. In the variables tab add a new variable called moveDirection
 a. Select Vector3 for the Variable Type

 5. Add another variable called moveSpeed
 a. Select Float for the Variable Type

 6. In the State tab �nd the Get Axis Vector action and add it
 a. Delete the word Horizontal from the Horizontal Axis text box
 b. For the red Store Vector drop down select the newly created

moveDirection
 c. For the Store Magnitude drop down select the newly created

moveSpeed
 7. Find the Controller Simple Move action and add it
 a. Make sure that it is listed below Get Axis Vector, move it down if

needed
 b. For Move Vector select moveDirection
 c. For Speed select the box with two lines in it to the right

 i. Now select moveSpeed from the drop down
 d. Change Space from World to Self (this will be important later)

 8. Add an Axis Event action
 a. Delete the Horizontal axis
 b. For No Direction select the Stop event from the drop-down list

 9. Add a Play Animation action
 a. Select run from the drop-down list of available animations

Go ahead and save everything and move Sancho away from the boxes.
Play the game and see what happens, Sancho may be o� the screen, in
which case reposition your camera so that you can see Sancho and try
pressing the Up button. The default Up axis in the Input Manager is “W”
or the Up arrow key. It will also work with Up on the left thumb stick
of a game controller if you have one connected. This should be very
encouraging at this point, so let’s see if we can get the back movement
working also then take a look at what it is that we did for all of this. Go
ahead and stop the game for now. Left-click on the �rst action in the

132

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Move Forward state and while holding down the Shift key, individually
click all of�the other actions as well. To copy the selected actions, click
the gear icon by any of�the actions or in the top right of the state itself
(see Figure�4.21).�After clicking on�one of the gears, choose Copy Selected
Actions. Now select the Move�Backward state, press the gear inside of
it and select Paste Actions. To �nish up the Move Backward state, we
will need to add the Stop Event�and connect it to the Idle state. Now for
some more testing, but�before we do that, rotate Sancho in your scene
slightly�so�that you can see him better from the camera angle that we
currently have.

133

Characters

FIG 4.20 FINISHED Move Forward state.

With Sancho repositioned so that you can see him better, go ahead and test
your scene. Make sure that he moves forward and backward as we would
expect him to, if you fall o� the edge of your world then just restart the
scene. Except for a few minor tweaks, he is moving forward and backward
very nicely at the moment. Now, what was all of that stu� that we just did?

The �rst thing that we did was to create two variables. One is being used
to store the direction that the player wants Sancho to go. This type of
information is considered to be a Vector3 as it contains three pieces of
information within a three-dimensional world (x, y, z). Table 4.9 contains
a list of the most commonly needed and therefore used variable types,
these are also known as data types. The other variable that we created was
a �oat to store how hard the player was pressing on the movement key,
and the table indicates what type of information is stored within this data
type as well.

The next thing that we did was to add a Get Axis Vector action. What this
action does is to grab the value of a speci�c axis and assign it to a variable
of your choice. What we are doing here is to use this to determine which
direction the player wants to go. When the player presses the Up key, the
axis vector value for that input is (0, 0, 1). The �rst two 0’s are for the X and
Y values, they are 0 because the player is not pressing any of those keys.
However, the Z is 1 because the player is pressing the Up key, which is on that
axis. If, however, the player were to press the Down key, the corresponding
vector would be (0, 0, �1). More importantly for us, though, is that we don’t
actually have to know what those values are, all we need to know is that
the player pressed Up or Down and that there is a direction associated with
that. Let the computer take care of the number side of things. We are storing

134

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.21 Gear selection icon.

the directional vector in our variable we created for that purpose and also
the magnitude of how hard the player is pressing in the direction. On the
keyboard this will generally be 0 or 1, it does have two brief stops in between
but they are not all that important to us. On a game controller though, this
value will represent how much pressure is being applied in that direction on
the thumb stick, therefore allowing us to have the character sneak if that is
what the player is wanting to do and we are prepared for that.

After grabbing the input from the user, we used those values within a
Controller Simple Move action to get our character going. Most of these are
self-explanatory, except for the one that we changed and said it would be
important later. The Space property de�nes which orientation the action
will use to move along. Consider the image in Figure 4.22, the knight in this
case is oriented di�erently than is the orange cube, check out the movement
gizmos. So, by selecting Self we are making sure that Forward, means
Forward as far as Sancho is concerned, not necessarily how the rest of the
world views it. To see this better, switch the value from Self to World and test
it, see how the behavior is di�erent? This will be vitally important once we
get Sancho rotating.

The last two actions that we added can be glossed over as they are the same
ones that we used in the Idle state, Play Animation and Axis Event. Granted,
in the Idle state, we used Play Random Animation, but as can be seen the
only di�erence between the two is the list of animations. Instead of looking
at them in more detail, we will go ahead and tweak our controller a little bit.
Hopefully you noticed that while Sancho was running backward it looked
really weird. That is because the animation that we are playing is actually for
a forward movement not a backward movement. To �x this, we are going
to get our run animation to play backward instead of forward. Inside of the
Move Backward state add a Set Animation Speed action and position it right
before the Play Animation action. We will now change the Anim Name to run

135

Characters

TABLE 4.9 Commonly Used Data Types in Unity

Data Type Use

Int An integer value, a whole number.
0, 1, 2, 3, 4, etc.

Float A decimal value, a real number.
0.0, 0.1, 0.2, 0.3, 0.4, etc.

Bool Stores only two values, true or false.

String Any collection of letters and numbers, or any collection of numbers that would never
be used for math, such as a phone number.

Game Object One of those things that is out in our game world, everything in the game world is a
Game Object.

Vector3 Anything that is comprised of three components. Must be �oat components.
Examples would include position or scale.

Object Capable of storing any of the object types that exist within Unity, such as colliders,
controllers, scripts, etc.

and the Speed to be �1. Now test out the forward and backward movement
and see what you think of that. Well that was �ne, but if you keep testing, you
will notice that if you go from backward to forward, the run continues to play
backward, to �x this just repeat what we did inside of the Move Forward state
except use a value of 1 for the Speed. Now, that is very nice.

We will do one more tweak to our movement and then go on to rotating
Sancho around. He seems to move just a little too slowly for the animation.
What we are going to do is create a variable that we can modify within the
Inspector so we can change his movement speed, while the game is running
and test out a nice feeling value.

 1. In the Variables tab create a new variable called runSpeed.
 a. Give it a variable type of Float.
 b. Select the tick box for Inspector so that this will be visible in the

Inspector. This is also known as a Public variable.
 c. Give this a default value of 1 in Float Value.

 2. In the state tab, use runSpeed for the Speed value of the Controller
Simple Move.

 3. Change the Speed value of the Controller Simple Move in the Move
Backward state as well.

With these changes made, when we return to the scene notice that the
runSpeed variable is now visible inside the Inspector panel for the knight
object (Figure 4.23). Now, we can enter a new value right here in the

136

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.22 Two objects selected in the Scene—notice how their local axes are not the same.

Inspector instead of going back into the state machine, in fact we can
enter a new value, while the game is running to �nd a speed that looks and
feels right. After some testing, we settled on a runSpeed value of 2. Notice,
however, that what we have done is to also ignore the amount of pressure
that the player is applying to the movement. Once again, in the case of the
keyboard input, this makes no di�erence; however, in the case of a game
controller or other input device, it will make a di�erence and we have
essentially removed the player’s ability to sneak around. For this particular
project, we are not worried about the player sneaking around the game
world as that is not a primary game feature or mechanic.

137

Characters

FIG 4.23 Newly created public variable runSpeed.

Video
In order to use the pressure on the game controller as well as a speed
multiplier to control the movement of the character take a look at the
video “Speed Multiplier” found on the companion website.

4.8.3.2 Rotating Sancho
It is now time to get Sancho rotating around so that he can see his world
better. Now, it is at this point that we can consider the fact that he should
be able to rotate from any of the states that he is currently in within the
Movement state machine. However, how would we know which state to
return to? It turns out that we could store the state we came from and do
it that way, but it would be a whole lot easier if we just created a separate
state machine for his rotation. This is a pretty key idea here, we can have
multiple state machines within a Game Object and all of these state
machines will work together. To create a new state machine for our knight
character, select the drop-down menu where it lists Movement and instead
choose Add FSM to Knight (Figure 4.24). We have gone ahead and created
this new machine named Rotate and added the essential structure to it as
depicted in Figure�4.25. As can be seen, we added two new states, created
three new events, and connected all of them in what seemed a reasonable
fashion. We are utilizing the exact same principles as we did with the
movement, however, instead of moving forward or backward we are now
rotating left or right.

Note
Each Game Object can have more than one state machine attached to it.

138

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.24 Drop-down menu to add a new FSM to an object.

Using what we just learned with the movement machine that we constructed
this rotation should not be too terribly di�cult. We have a couple of things to
recognize about it. First, this machine does not play any animations; hence, it will
not interfere with any animations that the Movement machine may be playing.
Next is that Sancho will not actually be moving anywhere this time just turning,
once again also not interfering with the actions of the Movement machine. We
will begin by constructing our transitions, which will be based upon the Axis
Event actions that we have already used. Inside of Idle, the axis event will respond
to Horizontal with Left Event going to Left and Right Event going to Right.
Inside of both turning states we will respond to the Horizontal axis with a Center
transition event returning us to center. It is important to make sure that in both
of our turn states, we are only responding to when the Horizontal axis has no
direction, make sure to remove the Vertical axis from the list. Now, we just need
to add an action to turn Sancho, this action is called Rotate (see Figure 4.26).

The �rst thing that we need to �gure out is which axis we want Sancho to
rotate around. In order to manually enter a value for the Angle around an
axis, click the darkened icon with the double lines in it and the drop-down
selection box will become a text box we can enter a value into. We want
Sancho to rotate around the Y axis in his Self-Space. We also want to make
sure that he does this rotation Every Frame. What we are saying here is that
each frame, each time the screen is refreshed, if the player is holding down a
rotation key, then go ahead and rotate Sancho a certain angle, we are using
an angle of 2 for the initial test. Duplicate the Rotate action in the Turn Left
state and see if Sancho can now turn and move. In your test, did Sancho turn
the same direction regardless of which key you were pressing? Any ideas why
this may have been so? This behavior was caused by our rotation command,
they are both rotating by the same angle, change one of them to a negative
2 to turn in the other direction. We will leave it to you to �nd out which one
should be positive and which should be negative. Remember, you can also

139

Characters

FIG 4.25 Skeleton structure of the rotation state machine.

try something and test it to see if it works the way you want it to or not, this
iterative development with unit testing is very important and bene�cial to us
as developers.

4.8.3.3 Jumping Sancho

Download
To get the character motor script referenced in the next section, �nd the
“CharacterMotor” Javascript �le in the Chapter Resources section of the
companion website and import the script into your project.

Our list of required things from our State Machine List is getting smaller
and smaller, and Sancho is getter ever closer to being an interesting
and fun little character to move around. We are down to the jumping
capability of Sancho, leaving the attacking actions as an exercise at the
end of this chapter. As of the writing of this book, the default controller
systems within Unity have changed to such an extent that in order to get
a character to jump we are going to have to utilize a script from the old
version of the character controller system (Unity 4). We have provided
a copy of this script for you to download from the companion website.
The generic approach to getting Sancho to jump is going to utilize the
following sequence of steps:

• Player presses the Space bar to start jump.
• Sancho will play his jump start animation.
• Sancho will play his jump �y animation and start moving.
• Sancho will stop at the last frame of his jump �y animation and

keep moving until hitting the ground.

140

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.26 Rotate action.

Note
The character motor script that we are using is needed in order
to have�the character jump with PlayMaker. PlayMaker is a very
powerful�visual script editing and developing tool; however, it
does have limitations and as of the writing of this book, there is
no other way to get a character to jump in Unity 5 with PlayMaker
other than�to�utilize this older script. Incidentally, this is the way
that we�made characters jump with PlayMaker prior to the release of
Unity�5.

This seems fairly straightforward to implement, we will have an On Ground
state that will be waiting for the Spacebar to be pressed. When the Spacebar
is pressed, there will be a transition event to another state that will play the
jump start animation. Once that has �nished, we will transition to another
state that will play the jump �y animation while getting Sancho to actually
start moving. Once that has �nished, we will transition to our �nal state
that will keep Sancho moving and exit back to the Idle state when Sancho
has hit the ground again. This basic �ow of this structure can be seen in the
completed FSM in Figure 4.27. Notice how we were able to construct this
basic diagram out of the plain English state machine list that we developed
fairly easily.

 1. Create a new FSM and name it Jump.
 a. In the Variables tab create a new variable of type Bool named

isGrounded.
 b. Within the Events tab create two new events one named “landed”

and the other “start.”
 c. Create a new state named On Ground.

 i. Add the transition event “start.”
 d. Create a new state named Start Animation.

 i. Add the FINISHED transition event.
 e. Create a new state named Fly.

 i. Add the “landed” transition event.
 f. Create a new state named Reset.

 i. Add the FINISHED transition event.
 g. Connect the transitions and states as shown in Figure 4.27.
 h. Select the On Ground state.

 i. Add a Get Button Down action to this state.
 A. Button Name should be Jump.
 B. Send Event should be start.

Before we go too much further, let’s pause for a moment and make sure
we are clear with what has happened thus far. We have created a Boolean
variable that we are going to use later to know if Sancho is on the ground

141

Characters

or not, we will get this information from the characterMotor script that
we just imported into our project. The two events that we created will be
utilized by the states as we have connected them. The Get Button Down
action is similar to the Get Axis action except that there is no positive and
negative values, there is simply a Boolean whether the button has been
pressed or not and if so then the specified event is fired by the action. For
our next step, we are going to need to pull the characterMotor script into
our FSM. This can be a bit confusing so make sure you take your time on
this one.

We will start by adding the characterMotor script to our Sancho character.
Locate the characterMotor script within your Project pane, it will need to be
imported to the project before becoming visible in this pane, and drag it
into the Inspector pane for the Sancho character. After releasing the mouse
button, you will notice that the characterMotor script has now been added
to the Sancho character as a new component. We can drag an object or an
object’s component into the actions panel within the PlayMaker editor and
when we do so we will have the option of creating a Set Property or a Get
Property action (Figure 4.28). These two actions allow us to reach into the
object (or component) that we have just dragged into the panel and get
information from inside of that object. When it comes to making a character
jump, there is a lot of stu� going on; we have the character moving up
and slowing down because of gravity and also checking for collisions with
the ground. It is not a simple process, which is why we need this script to
handle that for us. But we need information from the script. The two things
we need from the script are to know if Sancho has landed on the ground

142

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.27 A completed FSM to control Sancho jumping.

and also to force the script to either start or stop the jumping process. With
that explanation out of the way, time to get at it.

 1. Drag the Character Motor (Script) component into the action Panel for
the On Ground state.

 a. Select Set Property.
 i. Property should be inputJump.
 ii. Set Value should be unchecked.
 iii. Every Frame should be unchecked.
 2. Select the Start Animation state.
 a. Add a Play Animation action.

 i. Anim name should be jump-�y.
 ii. Finish Event should be FINISHED.
 b. Drag the Character Motor script component over again and select

Set Property.
 i. Property should be inputJump.
 ii. Set Value should be checked.
 iii. Every Frame should be unchecked.

143

Characters

FIG 4.28 Dragging the characterMotor script component into the Action panel.

 3. Select the Fly state.
 a. Drag the Character Motor script component over again and select

Get Property.
 i. Property should be grounded.
 ii. Store Bool should be isGrounded.
 iii. Every Frame should be checked.
 b. Add a Bool Test action.

 i. Bool Variable should be isGrounded.
 ii. Is True should be landed.
 iii. Every Frame should be checked.
 4. Select the Reset state.
 a. Add an Enable FSM action.

 i. FSM Name should be Movement.
 ii. Enable should be unchecked.
 iii. Reset on Exit should be checked.

We have seen most of these actions before, so we will focus on the new ones.
Beginning with the Get and Set Property actions. The Get Property action
that we are using is the grounded Boolean variable that is stored within
the characterMotor script, variables are properties of objects. A property is
anything that de�nes an object and provides customization to an object. As
we mentioned, that script will handle testing for being back on the ground
and when Sancho is back on the ground this particular value will be set to
True. Therefore, if we can grab that value from the script and store it in our
own variable inside of the FSM, then we can know when Sancho is back down
and go ahead and transition to another state. The Set Property actions that we
are using are the ones that will actually have the characterMotor script begin
the jumping stu� that it does which would include all of the calculations for
moving the character through the air. Since we have constructed our own
controller scheme, we are essentially hijacking the input for our own purposes
and through this Set Property action we can go back to the characterMotor
and let it know that it is now time to begin jumping or not as the case may be.

The other new actions that we used are the Enable FSM actions, which we
saw in the Rotate FSM. What we are doing here is to Force Unity to reset the
animations within the Movement FSM when the character has landed. To see
the issue, take the landed event from the Fly state and connect it directly to the
On Ground state and now test it by jumping while your character is running.
Notice that when the character lands again, Sancho does not transition back
into the running animation. The reason for this is that he was in the running
animation but then when he jumped, we started playing the jump-�y
animation, granted we have landed again, but we have not told the system to
start playing a di�erent animation yet. So, a way to get around this is what we
are doing with the Reset state. By turning the Movement FSM o� and back on
again, we are forcing that state machine to reset itself and to get Sancho to go
back into his running animation, while he is moving. There will be many times
that it will be necessary for us to turn state machines on and o�.

144

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

One last thing on the jumping of Sancho before leaving this section. We
may want to �ne tune and tweak how high Sancho jumps. To tweak these
settings, we can access the Character Motor script component within Sancho
and inside of the jumping section are two values to play with: Base Height
and Extra Height. The Base Height value is how far the character will go if
the player were to press the jump button and release it almost immediately
after pressing. The Extra Height is an additional height that will be added to
the base height if the jump button is held down. This is not to say that the
Extra Height is a double jump kind of mechanic, but rather this is similar to a
sneaking kind of system except for jumping. You can have a little hop with a
quick press or a solid jump with a longer press. Play around with these values
some to get Sancho behaving in a way that you like.

4.8.3.4 The Camera Follows Sancho
Our �nal step in this chapter will be to get the camera to follow our player
around and keep the player centered in the screen as a good third-person

145

Characters

FIG 4.29 Component options from the gear icon in the Inspector panel.

camera system should. We can approach this either through a programming
system or through a parent 1/n child hierarchy. As we have been doing some
programming, we are going to advance our knowledge of Unity by looking
into the parent–child technique for having the camera follow the player
character. To begin, it will be easiest if we get our camera to be oriented in
the same way that the character is and then tweak the camera from there.
Select the knight character in the scene and in the Inspector panel click the
gear in the top right corner of the Transform section. We will be looking
for the Copy Component option from the drop-down menu as depicted in
Figure 4.29. This will store all of the values of that component in the clipboard
memory. Now, select the Main Camera in the scene and click the gear for its
Transform component. This time select Paste Component Values from the
drop-down menu of Figure 4.29 to paste the Transform values of the knight
character into those of the Main Camera. Now, the Main Camera is positioned
and oriented as the player’s character is.

We can move the camera using the movement gizmo and also rotate the
camera to get a view of the player character that we are happy with. To �nish
up the following aspect of the camera, grab the Main Camera in the hierarchy
view and drag it down onto the Sancho game object, as shown in Figure 4.30.
This has created a relationship such that the camera is a child of the Sancho
object. Wherever the player’s character goes, the camera will follow and
will maintain the same perspective as that which we have established for it.

146

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 4.30 Main Camera as a child of the Sancho game object.

There�will be many times that we will need to set up relationships such as this
for other game objects throughout a project.

Note
While a camera is selected in the scene, the bottom right corner of the
Scene Editor will show a preview of the scene as viewed through the
camera, this helps us to set out cameras up the way we want them.

4.9 Summary
In this chapter, we explored the history of characters. We tend to think of
characters as being unique to each story, however, as we discovered in this
chapter there tends to be a pattern that characters fall into as far as their
purpose within the story. By understanding these character archetypes, we
can create characters to ful�ll speci�c roles within stories and our games.
However, not all games need to have characters and even if we incorporate
characters into our games, it may not be necessary for us to utilize every
archetype that is available. Even with these character archetypes, however,
games do have some speci�c needs that will require characters to ful�ll
these very speci�c roles, roles that have no equivalent in traditional stories
or movies. When we import assets into Unity, we need to take the time to
con�gure them, especially any animations that may be coming into the game
project with the asset. Through the power of state machines and PlayMaker,
we can create functional state machines fairly quickly that will allow us to add
controllable aspects of the characters that we do put into our games. These
state machines are easily managed and expanded upon as our game project
grows, and we need more functionality from the components. As we wrap
up this chapter, we now have the basics of a moveable game character in our
testing level, in our next chapter, we will construct the essential infrastructure
for a couple of non-player characters and get them tested out and working in
a test scene as well.

Vocabulary
The Writer’s Journey
The Hero with a Thousand Faces
Joseph Campbell
Christopher Vogler
Protagonist
Antagonist
Hero
Shadow
Mentor
Herald
Trickster

147

Characters

Threshold Guardian
Ally
Shapeshifter
Quest Giver
Merchant
Informational character
Asset
Concept art
Texture maps
3D Mesh
Animations
UV Unwrap
FBX �le
Character controller
MechAnim
Scale factor
Keyframe reduction
Loop
Ping-Pong
Once
Wrap mode
Character controller
Variable
Vector3
Float
Int
String
Bool
Input manager

Review Quiz
 1. Who wrote The Writer’s Journey?
 2. Who is famous for his comparative studies of the world’s legends and

myths?
 3. Consider the classic movie Star Wars: A New Hope, develop a list of the

characters from the movie and match them to the character archetypes
that we have studied.

 4. Where is the Input Manager located inside of Unity?
 5. When importing 3D assets with animations into Unity which rig

system�should be used if you do not want to utilize Unity’s MechAnim
system?

 6. Which component would we have to add to any Game Object if we
wanted the player to eventually be able to control it?

 7. Which PlayMaker action can be used to get the status of one of the axes
from the Input Manager?

 8. What is the variable type that we should use to store a value like 3.14?

148

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 9. Which PlayMaker action should be used to play an animation on a Game
Object?

 10. When moving a character with PlayMaker, why do we store the vector of
the movement axis from the Input Manager?

Exercises
 1. Modify the Fire1 and Fire2 inputs to be used with Sancho Panza as his

boxing and bonk actions.
 2. Add a new FSM to Sancho’s control system called actions and get his

animations playing for the bonk and boxing animations. Now, Sancho
should be able to punch and belly bonk. (HINT: While there are di�erent
ways of doing this, one approach would be to create a new FSM called
something like Actions and do everything in here for the bonk and the
boxing like we did for the moving. You may notice some odd behavior
with this approach; take a look at the Enable FSM action that we used
within the Rotation FSM).

 3. Import the following free assets from the asset store as potential
characters for the Sancho Panza project and con�gure them with
animations for the next chapter:

 a. Free Fantasy Spider by Kalamona
 b. Skeleton Pack by bshGame
 c. While you are getting those assets take a look around at the other

free characters available, maybe you can �nd some things that spark
your creativity for characters in your own project.

 4. Import the following assets developed by Arteria3D and found in
the Chapter Resources section of the companion website in the
“Arteria3D-Characters” �le:

 a. The donkey colt
 b. Flu� y sheep
 c. Pig
 d. Shetland Pony
 e. Teresa Female Merc
 f. Sanson Knight with Spear
 5. Create a brand new Unity project named “Breakout” that could be used

for creating a clone of the classic Breakout. Within this new project add
a 3D Cube Game Object that could serve as the player’s paddle and
construct a player control system using PlayMaker for this system.

Design Document
We are going to update our Sancho Panza design document with information
about our primary character, Sancho Panza. We are going to develop a
basic character background for him as well as include the artwork that has
been created for him. We will also include the control scheme that will be
associated with our lead character and incorporate information for our lead
antagonist, shadow, in the game and any of his henchmen/henchcreatures

149

Characters

(which may not be a word, but should be, and these guys would also be
known as threshold guardians and possibly even tricksters/shapeshifters).
In both cases, we are going to only use freely available resources within the
asset store of Unity.

Download
Updated version of the Sancho Panza design document can be
downloaded from the companion website: “DesignDocument_
chapter4.docx.”

Consider your design document that you have been working on thus far and
add the following to it:

 1. Hero/shadow characters.
 a. Include: backgrounds, descriptions, essential art, control schemes or

behaviors.
 2. Threshold guardians and/or tricksters.
 a. Include: backgrounds, descriptions, essential art, behaviors.
 3. If you think you may need more characters, implement them as well,

although you may also want to table this portion until after we have
looked at stories.

150

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

CHAPTER 5

Non-Player Characters

In the last chapter, we explored the various character archetypes that exist and
looked at how we can use those to help generate characters to populate our
game worlds. Our focus, at the time, was primarily on the player character, or the
hero. In this chapter, we will expand our programming knowledge by bringing
in behavior state machines for a couple of non-player characters. Responding
to player input is a fairly straightforward process as we develop the states and
the actions that will provide the given functionality for speci�ed inputs from
the player. However, when it comes to building behavior systems for characters,
we need to have the system gather its own information and respond to it.
We�will take a brief look at the world of arti�cial intelligence (AI) and implement
a rudimentary system for our Sancho Panza game. We will also consider the
complexity of the behavior and response system that is required based upon
the character archetype that is being implemented.

• What Is Arti�cial Intelligence?
• Di� erent Types of Arti�cial Intelligence
• Determine the Needed Behavior of a Threshold Guardian
• Implementing the Behaviors for the Threshold Guardian

151

5.1 What Is Arti�cial Intelligence?
We tend to have these Hollywood ideas of what AI is and as a result de�ne it
through these grand conceptualizations. For instance, we may de�ne AI as the
character Data from the television series Star Trek: The Next Generation. Or, we
may de�ne AI as HAL 9000 from the movie 2001: A Space Odyssey. While both
of these are wonderful examples of what AI could someday become, neither
actually provides a de�nition of what arti�cial intelligence is. At its core, AI is
most easily de�ned as a computer or other device making a decision on its
own based upon inputs provided to it. We could expand this de�nition to
include learning by saying that AI is a computer or other device becoming
better at a certain activity based upon engaging in or observing that activity
and learning about it. But, to keep the waters clear, we will stick with the �rst
de�nition. Any time that a computer makes a decision, it is utilizing arti�cial
intelligence.

The decision-making process must involve a situational question and a
choice to be made. For instance, asking a computer what the value of
2�+ 2 is and getting back the answer of 4 is not indicative of AI within the
con�nes of our current de�nition for it. We are going to exclude performing
numerical calculations from our conceptualization of AI. However, making
a decision based upon that calculation will be considered a form of AI.
For instance, our merchant character may decide that if the player has
more than 20 of a certain item, then the merchant will only o�er half the
value when buying them from the player, this particular merchant is a
shrewd one, or greedy depending on how you look at it. These calculations
and comparisons are vital for the system to determine that an event has
occurred, but it is the response to the event that we consider to be AI
within this book. We will leave more esoteric and academic discussions of
this�topic to others.

5.2 Some Di�erent Types
of�Arti�cial Intelligence

There are many di�erent areas of AI being studied, pursued, and
even implemented. In this section, we are going to brie�y touch on
a few of�them, speci�cally the ones that are most relevant to game
development.�After reading this section, you may start to �nd some
answers to some of�your questions about why game characters or entities
behave in a certain fashion. Table 5.1 provides a brief summary of these
types of AI.

5.2.1 Scripted Behavior

Scripted behaviors are some of the most commonly implemented character
behavior systems within video games. Scripted behavior systems use a state
machine to implement the AI and for the character to determine which
behavior it should do at any given point in time. The essential idea here is

152

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

that we as the developers �gure out exactly what we want a character to be
able to do and what would cause it to do any one of the things that it can do
as well as what would make it stop doing a speci�ed thing. Essentially, what
we want it to do would be the actions within various states and the things
that cause it to stop performing those actions would be the transition events
leading to another state. Consider the example of a scripted behavior for a
security guard in an action style game. We want this guard to be able to do
just a few things, namely

• Patrol her assigned guard area
• Attack any intruder (the player) that may enter the area
• Issue an alarm if possible
• Chase the intruder (the player) if they try to run away

That is all that we want that particular character to do, granted it is a
simplistic behavior system, but then again how many games have we played
with just that layout or something extremely similar to it and had fun? Always
remember that as a game developer your job is to entertain your players
and help them have fun �rst and foremost. Consider the state diagram
depicted in Figure 5.1 for a graphical representation of the basic behaviors
for this character. As you can see, this style is tailor made for a visual scripting
environment such as PlayMaker.

This type of system is a good choice for most action types of games, as we
know what each type of character should be doing within the game and we
will have very tight control over these behaviors while the game is running.
This type of system is also fairly easy to debug as the boundary conditions
that cause transitions to occur should be straightforward to set�up and
therefore test. We, as the developers, know what the agent should be

153

Non-Player Characters

TABLE 5.1 Summary of the Di�erent Types of Arti�cial Intelligence Presented

AI Type Pros Cons Good Fits

Scripted behavior Get the exact behavior
you want

Know what it should be
doing

Extremely predictable Action games

Random behavior Is not predictable Can be di�cult to debug Game with no strategy
component or
strategy games
aimed at children

Expert systems Decision process mimics
an expert

Need solid understanding
of system

Can be predictable

Classic strategy games
such as chess

Mathematical
modeling

A much less predictable
scripted behavior system

Must construct the
mathematical models

Action games

Evolutionary
systems

Closely mimics our
decision-making process

Di�cult to debug Life simulators

doing in a given situation and as such can quickly determine whether the
system is working correctly. However, these types of systems tend to be
very predictable as they follow patterns and humans are very good at
detecting the occurrence of patterns even if we may not consciously know
that we are�doing so. Due to the predictable nature of these situations it
can be fairly straightforward to �nd and exploit weaknesses, which as game
players we have all done. For instance, these well-de�ned patterns would
cause problems if we were to implement this type of AI within a strategy
game, as the computer opponent would always respond the same way to
a given situation and the human player would know this after playing a
couple of times.

5.2.2 Random Behavior

Random behavior is an odd choice for an AI mechanism, but remember
our definition for AI at the beginning of the chapter. For our purposes,
AI�is defined as any time that the computer makes a decision, whether the
decision is a good or bad one is entirely irrelevant within the confines of
this definition. This approach frees us to consider such things as random
behavior as a form of AI. With random behavior, the system is free to
choose any activity that it is capable of performing, for any reason it
wants. Essentially, whenever a decision needs to be made, the agent
will randomly pick from among the activities that it can do and execute
that random selection. We could make this a little more interesting by
providing different weights to the options, such that they are not evenly
distributed but each has a different likelihood of being selected during
a decision moment. For instance, consider the random idle animation of
Sancho from the previous chapter. While that decision in and of itself is far
from an AI system, we can get a glimpse of how random decision making
could be used.

154

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

�� �� ���������������� ��

���� �

����������

�� �������� �
�����������

�� �� ���������������� ��

�� �� ������� �� ��

������ � �� ��
����������

��������
���

����

FIG 5.1 State machine for a scripted behavior mechanism.

Consider our sentry guard from the previous section. A random behavior system
would be one that every few seconds the agent would reach a moment of
decision making and randomly select one of the actions to perform as depicted
in Figure 5.2. This means that the agent may go o� and sound the alarm when
the player �rst spawns into the level simply because that was randomly selected.
Completely random behavior like this would not be good for our game for two
reasons. The �rst is that the player would not �nd the computer characters to be
very engaging, and it would be somewhat like existing within an insane asylum.
Now, if the setting of our game were an insane asylum and at least some of the
characters were insane, well then that would be di�erent. But for a supposedly
rational character, random behavior would just not be acceptable. The other
�aw with this approach is testing, due to the random nature of the behaviors, it
becomes di�cult to test and make sure that all behaviors are working correctly
as we have no idea when a given action will be selected by the agent.

As a solo decision-making mechanism, random selection works best with
board style games that do not involve strategy or with children’s games.
For instance, a random selection engine would work very well for an
implementation of a Tic-Tac-Toe mobile app being targeted for children.
For young children, the strategy of this game is often very elusive and the
random nature of the agent would be such that the child could as likely win
and as they could lose. A scripted behavior would too easily defeat the child
every time and frustrate the child. In fact, a random implementation of a
Tic-Tac-Toe game was built for my kids when they were young and they spent
hours playing it and trying to develop strategies to defeat it as they could
never quite nail down the best approach to beating it.

155

Non-Player Characters

Chase

25% Chance to select 5 Seconds elapsed

5 Seconds elapsed

5 Seconds elapsed

5 Seconds elapsed

Patrol Make decision

Attack

Alarm

25% Chance to select

25% Chance to select 25% Chance to select

FIG 5.2 A completely random version of the guard agent.

However, if we were to add a random system to a scripted behavior, we will
be getting to a slightly more interesting mechanic. Consider Figure 5.3 in
which now the agent may attack or sound the alarm at any point during an
encounter with the player, making it slightly more challenging for the player
to determine how quickly or how long to engage with the enemy agent.
Getting these system balanced out to more closely model a human decision-
making process will come in when we look at mathematical modeling. Also
notice that the state machine is becoming more complex as we add more
possible transitions from the various states. Of course, with the machine as
diagrammed, the agent may try to sound the alarm more than once, possibly
an undesirable e�ect or then again an interesting side e�ect that would give
the illusion of a panicked guard.

5.2.3 Expert Systems

Consider the possibility of creating a set of answers to common questions
where the answers were all provided by experts in the �eld. Something
similar to the teacher’s manual for a book. Essentially that is what an expert
system is. These systems are constructed by compiling a collection of
information from experts in the �eld, whatever that may be, and �nding
out what they would do in a given situation. Expert systems are commonly
used in real-world situations as assistants with help desk operations as
they can potentially guide those with technical problems to the most likely
solutions given provided problems and symptoms. As far as an approach
for AI within a video game, these could potentially work very well with
some types of strategy games, such as Chess, or even as management
components within sports games. By polling football coaches, we could
develop a set of solutions, play calls, for given problems, game situations.
This would provide a more engaging and challenging opponent for the
player to deal with.

156

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Alarm sounded
Attack

Chase

Patrol

Player detected

Pick response

Alarm

Player dead or escaped
Near player

Player flees

33% Chance

33% Chance

33% Chance

Random chance

Player dead or escaped

FIG 5.3 Scripted behavior enhanced with a random twist.

Expert systems are implemented in the same way as the previous
techniques that we looked at, at least as far as core implementation is
concerned. If we consider the solutions provided within the set of solutions
as potential states for the agent to transition to, then we could see that the
event that causes the transition to a speci�c state in the expert system is
going to be the speci�c situation that led to the expert suggesting such a
solution.�The complexity of our agent’s behavior will then be limited by two
factors. The��rst limiting factor is the number of solutions that we obtain
from those that we consider to be experts. The second factor is the number
of initial situations or conditions that we can imagine in order for the experts
to provide a solution. For instance, our expert system would have to have
a default solution or action to do if it is facing a situation not speci�cally
de�ned for it.

At �rst glance, an expert system seems like a wonderful idea; however,
if we consider the possible actions that a player can actually perform in
a game we will quickly recognize that there are not that many di�erent
situations to encounter. In which case our carefully crafted expert system
has become nothing but a scripted behavior in which the behaviors
and actions were decided by experts as opposed to the game designer.
We have thrown this word “expert” around quite a bit, but who exactly
would qualify as an expert? Ultimately, this would depend on the game
that is being created; however, some possibilities might include grand
chess masters, sports coaches or analysts, politicians, historians, and
psychologists. It all depends on the game that we are creating, but an
expert system would not �t all games. For instance, an expert system
would not make Donkey Kong any more believable of a game character
than he already is. Although an expert system could make the manager of
your rival baseball team a whole lot more believable and therefore more
fun to play against.

5.2.4 Mathematical Behavior Modeling

A mathematical model of a behavior system is somewhat like combining
our previous three systems into one system. The approach here is to build a
model of the decision process including percentages for each decision such
that the agent’s decision process more closely mimics that of a human player.
Consider your experience playing a shooter style of game. When do you
reload your weapons, when do you hide behind cover, at what point do you
disengage so that your shields may recharge, when do you charge in guns
blazing and when do you hold back. There are many other questions that
we could ask as well, but most likely your answers to the above questions
were something along the lines of “it depends.” Your answer showcased
an interesting aspect of how we play these games; speci�cally, we do not
necessarily follow a set pattern. But the computer agents in these games
do follow strict patterns through their scripted behaviors; however, with a
mathematical model we can instead have the character make decisions in a
less structured and more believable fashion.

157

Non-Player Characters

We will break this down into a more understandable form through an
example. Returning to our sentry guard that we have been discussing
and building upon we will expand one of the states that we have created,
speci�cally the Attack state. As it turns out, there are many things going on in
the attack state as can be seen in Figure�5.4. The character has multiple things
that it can do and this is a fairly nice scripted behavior for it. However, it is also
a very rigid system as it will always reload when the ammunition gets below
ten shots. Likewise, it will also always hide when the health gets below 20%
and re-engage when the health is back up to 75%. Players will quickly pick up
on this behavior and start to exploit it as it has some very glaring weaknesses.

We can breathe some fresh air into this decision-making process by building
a mathematical model to better mimic when certain decisions should be
made. Consider the changes made in Table 5.2 comparing the events that
cause the transitions to occur. Now, certain decisions become more likely as
conditions increase; however, there is the possibility of those decisions being
made earlier. For instance, the decision to re-engage after hiding may now
be made at any point from 30% to 75% health with the likelihood gradually
increasing until we reach 75% health and the agent must re-engage. Now
this is just a quick sketch of a possible system for this sentry agent. While
this may serve as a solid starting point, it will have to be tweaked through
much play testing. This is an interesting concept to mention at this point.
So often, the AI of a game is left until later in the development of the game
leaving not enough time to fully design, implement, and test interesting
behavior mechanics. If we are wanting a more complex system, such as this
model for the sentry guard, we will have to be developing and testing this
in conjunction with other work. For instance, there can be a separate scene
created in our project for testing the sentry guard and our AI developers

158

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FINISHED

Snap shot

Charge/Melee

Disengage and flee

Reload
Hide recover

Health < 20%

FINISHED
FINISHED

FINISHED
Select action

Shots < 10

Out of bullets

Health > 85%

20% < Health < 85%

FINISHED

FIG 5.4 State machine for the Attack state of the sentry guard.

and game testers can be working on this scene and tweaking at the same
time that other scenes are being developed. A solid mathematical model of
behavior is an excellent choice for a shooter style game or other action-based
game with the computer playing the role of an adversary. While such an
approach could be used for an ally of the player, keep in mind that the players
will get frustrated if the ally opts to re-engage before they are really healthy
enough to do so.

Granted this is still a simple example, but we can begin to see how the
behavior of the agent is becoming less rigidly scripted and more �uid.
Through this approach, the agent becomes more likely to do something in
response to the player’s actions, but there is still no guarantee until a certain
threshold is reached. As a result, it is possible that the guard runs away very
early in the con�ict or that the guard just continues to shoot at the player
right up until the moment that the guard is killed. As mentioned, this is just
a�preliminary run through with some exaggerated values to help us to better
visualize how a system might work, there would be much tweaking ahead
of�us to get this model balanced correctly.

5.2.5 Evolutionary Systems

Evolutionary systems most closely mimic the decision-making process that
we actually go through. Given all of the possible actions that we could select
to do, our thought process will provide some sort of bene�t analysis to each
one and compare these bene�ts against each other. Sometimes, we will have
actions that will mutate somewhat as we consider all of the possibilities and
eventually settle on one that we consider to have the most bene�t to us. If
we were to consider a game such as The Sims as a quick example, we may be
able to clarify this somewhat (see Figure 5.5). When a computer-controlled
Sim character reaches a time to make a decision, it could (emphasis on could
because this is not how it was actually implemented within the games) create
a solution set of available actions by randomly selecting a bunch of things
that it could do at that moment in time. From the solution set of actions, the
agent then would evaluate each one based on some comparative model

159

Non-Player Characters

TABLE 5.2 Comparison of Traditional Scripted Events to Modeled Events

Action Scripted Event Modeled/Weighted Event

Charge melee Health above 85% 100%—Health at 80%
0%—Health below 84%

Snap shot Health between 20% and 85% 95%—Health at 84%
5%—Health at 1%

Reload Less than 10 shots in gun 0%—Gun fully loaded
100%—Gun is empty

Hide and recover Health below 20% 5%—Health at 84%
95%—Health at 1%

Disengage and �ee No more bullets to reload 0%—All bullets
100%—No bullets

to determine the usefulness of making such a decision. For instance, if the
character had just returned from work, then it would not be very useful for
the character to head o� to work. Thus, that action would be valued very low.
Through this evaluation process, the actions available can be ranked from a
“best” to a “worst” and the “best” one selected. After ranking these, the agent
could keep the top ten or so and add a few more random ones to this. Repeat
the ranking system and repeat the random additions. Through this approach,
the agent would evaluate many if not most of the available actions and end
up selecting the one that scored the highest on the �nal rankings. At least
that would be a potential implementation in a nutshell with a few details left
to be worked out.

With these evolutionary techniques, of which genetic algorithms are a very
strong contender for use in video games, the agent will not always make
the same decision when faced with the same situation. At �rst glance,
the behavior may appear to be random, but it will not be long before the
players will pick up that the behavior is not random, that the behavior is
actually bene�ting the agent in some way. The interesting thing about these
approaches within a video game character is that we ultimately do not know
exactly what the agent will do in a given situation, we can make guesses
based on governing factors, but it would only be a guess and could be wrong
quite often.

Generally speaking, evolutionary techniques are very valuable in the
academic setting as they allow researchers to have computers develop a
wide range of unknown solutions to a given problem, ultimately picking the

160

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

�� ������ ������

�� ����������������������

�� �����������������
�� � �
	������

� ����������� �� ��
���� ���������

���������� �� ��

�����
����������������

�� ����������������������� �

�•••�••�

�•••�••�

�� ��������������

�•••�••�

�•••�••�

�•••�••�

FIG 5.5 A graphical representation of the potential evolutionary decision process.

most optimal solution available for the problem. However, within a video
game setting, these approaches do not immediately lend themselves to
the behaviors of most computer-controlled characters. For instance, if we
allowed a fully evolutionary approach to decision making for a merchant
character, that character may decide that it is more cost-e�ective to gather
stu� outside of town on her own rather than waiting for a player to show up
and sell the materials to them. As a result of that decision, the store in town
may be closed because the merchant is out gathering supplies and never
reopens because the merchant was killed in the process. Granted, we could
prevent the decision-making system from pursuing such possibilities for
the agent, but if we restrict the evolutionary system too heavily then it will
essentially become a mathematical model of human behavior. This type of
system would really only be applicable to a game in which there are a wide
range of actions that can be performed at any given moment in time, such as
The Sims mentioned earlier.

5.3 Selecting an Arti�cial Intelligence System
The �rst decision that must be made when developing your behavior
functionality is to determine which of the AI approaches you wish to
implement. The type of system selected should be based on several factors:

• What type of game are we making?
• Action games do not necessarily require the same level of AI

complexity as a strategy game.
• Who is our target audience and what do they expect?

• There is a big di�erence between targeting children or casual
players versus targeting hard-core simulation gamers.

• How much time do we have for creating the AI?
• If our game is on a quick development cycle, then the AI is on a

quick cycle as well.
• Do we have people that work on the AI while the rest of the project is

developed?
• Keep in mind the tweak and test and repeat cycle for the more

complex AI systems, we cannot have our game in a perpetual
stall while we tweak and tweak the AI.

• What is our programming level?
• If we are just starting out programming, then maybe the scripted

approach will work best for us and not be too frustrating to
implement.

Note
The fun factor of the game is the �nal deciding factor when working with
computer-controlled characters. If their behavior detracts from the fun
then change it, even if that means going with a simpler type of AI.

161

Non-Player Characters

Based on these questions and our answers, we are going to employ a
scripted behavior system for our threshold guardian. We may return to it
later and add some �avoring with a random element or two, but for our
�rst game and our �rst shot at this, if we can manage to get a threshold
guardian to respond to the actions of the player that would be a major
accomplishment for us and a very solid step in the right direction. Do not
try to learn everything in one project, set goals for yourself with each
game project that you take on and always improve your skill set, but do not
overreach. We will learn far more by completing games than by starting the
process and quitting mid way to start another project because we got stuck
in the �rst project.

5.4 Designing a Threshold Guardian
When approaching a character or entity that is intended to challenge
the player in some way, we should recognize that such a character falls
into the category of a threshold guardian archetype from the previous
chapter. Now, it is not necessary that this threshold guardian have a fully
fleshed-out character background with goals and a reason for being,
though there will be cases when the game would definitely benefit from
that level of detail. Consider our spider that we added to the project
in the exercises from the last chapter. We could turn this into a spider
similar to Shelob from The Lord of the Rings, but as noted in the design
document, this is more of an overgrown and common spider that has
taken over the area that Sancho is currently in. Also, there are many of
these spiders. They are here for the sole purpose of challenging the
player, though once we get to a story we may enlarge their roles some
and revisit their characters. Remember, game development is an iterative
process and�many of these pieces work with and off of each other as the
game is being designed.

The spider is here to provide a classic action game challenge to the player.
The player will need to get past these spiders to get to other areas of the
scene and to �nd things that they may need for completing the current game
level. It is important that we know what we need from the characters before
we start designing an AI system for them. It is also important that we know
what we can make the characters do as well. For instance, we do not have
an animation sequence of this spider spinning a web to capture Sancho, so
as cool as it may sound to do that while we design the AI we cannot actually
make the character do that, at least not yet.

Table 5.3 lists the animations that are available within the spider object
as well as some ideas of what we may use them for. When using assets
that others have created, do not limit your creativity to the names of the
animations, watch each animation a few times and see if there is anything
else that you could use the animation for. For that matter, you could even
consider what it might look like if played backward using the trick we used in
the previous chapter to help Sancho walking backward look correct.

162

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

In Figure 5.6, we have provided the rudimentary skeleton of what we will
construct for the behavior of this agent. Notice that constructing AI systems,
even if we do a small AI, is more complex than creating a response system
to the player. For our spider object, it is going to have to be able to make the
decisions for what to do at the appropriate time which adds some complexity
to what we need to do. For now, we are just looking at an overview of what
we would like to have and will break each piece down in more detail in the
following sections.

The essential concept here is that we want the spider to wander around
the�world or at least a part of the world doing spidery things and just being

163

Non-Player Characters

TABLE 5.3 Animation List Available in the Free Spider Object

Animation Name Possible Uses

refpose This is the default pose for the object, maybe as a frozen spider.

walk Standard patrol or injured escape.

run Player is spotted and spider is charging to attack.

attack1 Good base attack for the spider.

attack2 Can use as a secondary attack.

idle Spider is wounded and trying to recover or is trying to decide where to go next.

taunt Spider has spotted the player and is preparing to charge or as a defensive block.

hit1 Can be used when the spider gets hit, or when it lands after jumping/falling or if
we were to allow it to spin a web.

hit2 De�nitely a just got hit although could also be used if the spider was on a
slippery surface.

jump Jumping can also be used when the spider initially spots the player and is ready
to charge them.

death1 Death, nothing else really comes to mind.

death2 Another death, or badly injured, or sleeping.

allanims This plays all of the animations, not useful to us at the moment.

Player spotted

Player in range

Close in

Patrol

Attack

Player out of range or dead

FIG 5.6 Overview of the AI system for the spider character.

a spider. But, whenever the player (which could be expanded later to include
other characters as well, for instance an ally character if we had one) gets
close enough to the spider, the spider should close in to attack or defend its
territory depending on your perspective. Once the spider gets close enough
to kick or bite the player we want the spider to launch into some nasty attacks
and just start beating up the poor player. If the player is able to escape from
the spider and be too far for it too attack, then the spider will return to its daily
patrol. An interesting thing should happen at that point in time, if the player is
still in range for the spider to see the player, then the spider will close in again,
essentially chase the player around. The spider will continue this process of
attacking until either the player has escaped or been killed.

This is a good overview of the primary controller system for our spider.
However, that is not enough design work for us to begin an implementation
just yet. We still need to take a look at exactly how the spider should go
about patrolling and closing in and attacking. Figure 5.7 depicts a potential
design layout for the patrol system. This one is fairly straightforward. We
want the spider to �gure out where it is going to go, Get Location, and
then move until it gets there. Once it has arrived, we want it to �nd another
location and get to moving again. However, before we just gloss over that too
quickly, we are also going to want it to play some kind of walking animation,
while it is moving over to the new location as well.

The process of pursuing the player should be more straightforward. By having
a Controller state machine that is responsible for actually knowing when to
chase and when to stop chasing all our Pursue state machine is going to have
to be responsible for is actually moving the spider toward the thing that it is
chasing. Since there are no logical decisions that it needs to make, those are
made by the Controller itself, the Pursue state machine will only need one
state, the one that moves the spider. But, we still need to consider what we
want the spider to do as we design this. Figure 5.8 provides an overview of
how we would like this Pursue FSM to function. Essentially, it is going to look
at what it is chasing, move toward what it is chasing, and play some type of
animation to make it look like it is walking or running or hopping.

The process of attacking is more complex from an implementation
perspective than we would initially expect. But if we take our time through
designing it �rst and at least attempting to consider the various factors and
anticipate issues then our implementation process will go much smoother. An
attack, either by the spider, the player, or some other object in the game, must

164

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Start moving

Moving and animating

Location reached

Get location

FIG 5.7 Basic layout of the potential Patrolling FSM.

run through three distinct stages and these stages are not necessarily always
going to be within the same state machine or even within the same game
object for that matter. The �rst stage is to perform the actual attack, which we
can see in Figure 5.9. The spider will attack its target object, by playing some
type of attack animation and then go into a rest between attacks. We really do
not want the spider to just constantly be attacking, but rather to make some
type of lunge then to pause a moment or two before striking out again.

The design of Figure 5.9 would get our spider looking like it is attacking
something. This is important and this is the �rst stage of the three that we
must complete. The second stage is to have the spider or weapon know that
it has hit the player. In order to know that the player has actually been hit
as a result of the attack, we will need to construct some collision detection.
As it turns out, Unity will handle all of the collision detection for us once we
have the collider components added and positioned as we would like. So, this
means that all we would need to do is to respond to these collisions when they
occur. Figure�5.10 displays a design view of our collision response system for
the spider. As you can see the idea here is that whenever a speci�c collision
occurs with the player, the spider is going to hurt it. Fairly straightforward, but
the key here is to consider where such a state machine should be placed.

The �nal stage we need to take on, which is in some ways a continuation or
sub-stage of the collision detection, is to actually hurt the object that we
have hit. This has been separated into its own stage here, because in our
project at hand, we plan to implement a health system for the things that

165

Non-Player Characters

Look at player

Move toward player

Play an animation

Repeat

FIG 5.8 Design layout for the Pursue FSM.

FINISHED

PausePlay attack animation

FINISHED

FIG 5.9 Layout design for the Attacking FSM.

populate the world, this will allow for power-ups and other things to be
added as we move along. Figure 5.11 displays the design of a health system
for our Sancho character. This same system could be copied in to other
objects that we want to provide a health system for. The logical �ow here is
to begin by initializing all of our internal health components; at �rst glance, it
may seem unnecessary, but if we were to add in the capability of a character
to respawn, then we would have to reinitialize everything at that point. Once
everything has been set up, the system will go into a Living state where it will
just wait until it is hit by something that can hurt it.

Several things must happen in fairly quick succession once the player
does get hit by something painful. We begin by playing an animation and
subtracting some points from the character’s health, whatever that may be.
After completing those, it is necessary to �gure out if the character is still
alive or not, basically did the damage that was just caused kill the character.
If so, then we will play some kind of animation showing the player that the
character is dead and then make sure that the character knows that it is dead
as well. If the damage did not kill the character, then it is necessary to begin
winding back toward our Living, or Idle if you will, state. On our way, there we
will need to reset everything to wait for the next hit.

166

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FINISHED

Hit player

Hurt playerWaiting

FIG 5.10 Collision response system for an attack.

FINISHED

FINISHED

Subtract from health and play animation

Check health

No health
Dead

FINISHED

Still alive
Reset

Initialize Got hitLiving

FIG 5.11 Design layout for the Health state machine for the Sancho character.

Now that we have all of the systems that we will be using designed and
thought through, we are ready to begin the implementation process and
bring this threshold guardian to life. As we go through these next few sections,
we�will �nd that many of the ideas that were represented within the design
work will fall straight into the state machines that will be built for the objects.
We will also discover that there are some things that were not included in this
design that will need to be added to the actual implementation. These will be
minor things that will be speci�c to how we need to get the system to behave
the way we have described here in the design work.

5.5 Implementing the Threshold Guardian
In this section, we are going to construct (implement) the various state
machines that we have just �nished designing. During the process, it may
be necessary to rework some of our design ideas, though hopefully not
too drastically. While doing the design work in the previous sections, there
was no way for us to test what we were thinking. The focus was entirely
on thinking about the spider from a logical perspective to make sure that
our minds were wrapped around what we were going to build. Now that
we are actually going to build it, we will do this in a series of consecutive
steps slowly building up toward the �nal version of our spider. This will
force us back into the iterative development process that we have discussed
previously. Following a design � implement � test � tweak � repeat form
of development cycle will make our lives so much easier as we get to more
and more complex systems to create. Though, as we said, we are hoping to
not have to fall back onto the design component too much, we would prefer
the process to be more of implement � test � tweak � repeat. For this
character AI, which once it is �nished could be applied to any other character
in the game with very minor changes and tweaks; we are going to construct
it in the following order:

• Controller: Responsible for managing all of the major states and
transitions for the AI.

• Patrolling: Responsible for having the spider patrol a speci�ed area
within the game world.

• Spotting the Player: Handles chasing after the player once the player
has been spotted by the spider.

• Attacking the Player: Once the spider gets close enough to bite or kick
at Sancho it will.

• Hurting the Player: Responsible for being aware of the health of the
character, in this case it will be Sancho as we saw in the design stage,
and knowing if Sancho has died.

• Connecting Attack and Health: With the attack system and health
management system constructed, it is now time to connect these
and get the functionality going that we have been driving at.

• Final Tweak: With all of the systems in place, it is time for some play
testing, bug hunting, and tweaking.

167

Non-Player Characters

Download
You can find the starting scene for this chapter in the complete
project�package on the companion website, the scene name is:
“Chapter5_part1.”

Note
We have quite a few things that we need to do to get this all working.
We are going to be stretching ourselves with more complex state
machines within PlayMaker; however, if we take our time through these
next sections, we should all come out of this with a functioning AI for
the spider.

5.5.1 The Controller

This is essentially the brain of the spider deciding what it should be doing and
when. We are going to go ahead and construct this brain and get it in place
than add the sub-components one by one. To begin, select the spider object
in the scene and add an FSM to it. We will call this FSM Controller. Next create
the events and variables that are listed in Table 5.4. For the detectionRange
variable, be sure to click the Inspector check box to make the variable visible
within the Inspector panel as this will make it much easier for us to tweak
the spider’s sensitivity later. As far as the Spider being killed, we will handle
that through a di�erent mechanism, an independent health system inside
of the spider that will also be duplicated and modi�ed for use with Sancho.
The essential rationale here is that while the spider cannot detect the player,
it will follow its patrol path; however, as soon as it does�detect the player it
will close in on them and attack. If the player manages to escape, the spider
will return to patrolling. It will also be necessary for us to go ahead and create
four other FSMs for the spider, and we will populate them later: Patrolling,
Pursue, Attacking, and Health. In fact, as a result of our previous design work,
we even already have an idea of the layout of these other state machines,
everything is starting to fall together for us now. Figure�5.12 shows the
skeleton of the controller FSM built within�PlayMaker. While we do not have

168

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 5.4 Events and Variables Needed for the Spider Controller FSM

Events Variables and Types

In Range detectionRange � Float � Inspector

Player Lost playerDistance � Float

Player Spotted attackRange � Float

enemy � GameObject

targetAlive � Bool

any actions associated with any states yet, being able to throw this out there
is a positive and con�dent step forward.

Note
Remember that variables only exist within the FSM that they were
created in (unless we have speci�ed them as Global, which we have not).
This means that other FSMs cannot interact with these variables, at least
not directly.

 1. Select the Patrol state
 a. Add a Player Spotted transition event
 b. Add an Enable FSM action

 i. Enable the Patrol FSM
 ii. Reset on Exit should be checked
 c. Add a Find Closest action

 i. With tag should be equal to Player
 ii. Store object in enemy variable
 iii. Store distance in playerDistance
 iv. Every frame should be checked
 d. Add a Float Compare action

 i. Use playerDistance for Float 1
 ii. Use detectionRange for Float 2
 iii. Set Less Than to the Player Spotted event

We just threw some pretty cool stu� into this state and before rushing o�, we
will take a look at these actions and how they work together. To begin, we have
the Enable FSM action which was the solution to one of the exercises from
the previous chapter, or at least one of the solutions. In order to get Sancho to
animate correctly when the player boxed or bonked, it was best to disable the
Movement FSM and turn it back on after Sancho had �nished his action. So, in a
sense, there is nothing new there, just using the same thing. Now, consider this

169

Non-Player Characters

FIG 5.12 Skeleton of a controller state machine inside of PlayMaker.

for a moment, the purpose of this controller is to turn the other state machines
on or o� depending on what the spider should be doing, so enabling each FSM
within the appropriate state is going to abstract our actions.

Note
One of the interesting things about programming is that we can
oftentimes create very complex behaviors or systems using seemingly
simple code structures. Always remember that there is not a single action
that will do everything that we need, we must put the actions together
in sequences to get what we want and those sequences are built from
simpler actions.

Abstraction is a key concept when it comes to programming. The idea here
is similar to that of a black box. With a black box, we give it something and it
then gives us something in return. How the black box goes about doing this
we may not have any idea and we do not need to know how the black box
functions in order to use it. For example, it is not necessary to understand
how an internal combustion engine works in order to drive a car. To bring this
back to programming, we have a state in this controller called Patrol. When
this state is activated, the �rst thing it does is to �re up another state machine
that is responsible for that actual work of getting the spider to go from one
location to another. Our Patrol state in the Controller FSM has no idea how
that Patrolling FSM is actually doing the patrolling and it does not need to
know how it works. All the controller needs to know is that the Patrolling FSM
is there and that it will handle getting the spider to patrol.

The next two actions in this state are responsible for �guring out when we
should leave this state and go do something else, speci�cally attack the player.
As a result, both of these actions must be performed every frame, that is to
say they must be constantly updating. We begin with the Find Closest action.
What this one does is to �nd the closest object within the scene that has a
speci�c tag. Back in the last chapter, we looked at tags and how they can
be applied to a Game Object in the scene. Our Sancho character is currently
tagged as a Player object, and it is this tag that we have the Find Closest action
looking for. This action will �nd the closest object that matches this tag and
allows us to keep a reference to that object in a variable. It will also calculate
the distance between the source; in this case, the spider, and that closest
object that it could �nd. This distance can also be stored within a variable for
us to use throughout this machine. This distance is determined through vector
mathematics (as the position of each object is stored internally as a Vector3
data type) and results in a �oating point value, a number with decimals. We
will store this value in our variable named playerDistance.

Now that we know how far away the player is from the spider, we just need
to see if the player is close enough to the spider to trigger an attack impulse
from the spider. It is somewhat like �nding a snake on a path and wondering
how close it will let you get before it strikes, which by the way is not a course

170

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

of action we are recommending here. This comparison is done through the
Float Compare action. PlayMaker includes comparison actions for int, string,
and objects as well. A comparison can provide us with one of three answers:
greater than, less than, or equal to. From these three possibilities, we could
potentially branch out in three di�erent directions. In our case, all we care
about is whether the player’s distance is less than the detection range that
we have provided. Currently, the detection range is 0 which is perfectly �ne
for now although it essentially means that the spider will not detect the
player until they are right on top of each other, their distance is 0. However,
pretty soon we will return to this value and start changing it to �nd a good
aggression for our spider.

Note
When comparing two values that are exactly the same, for instance 4 and
4, the only possible response is equal to, 4 is neither less than nor greater
than 4 it is exactly equal to 4.

The other variables that we created during this step, namely the attackRange
and targetAlive variables are going to be used later. For the moment, we will
simply de�ne how they will be used and plug them in later. The attackRange
variable will be used in the same way as the detectionRange variable was
except it is to determine a transition from the Pursue state to the Attack state.
We cannot use the same detectionRange variable as the range that will be
allowed to trigger actual attacking of the player will be much closer than the
detectionRange. The targetAlive Bool variable will be utilized in the Attack
state as there are ultimately two reasons that could cause the spider to stop
attacking, either the player has gotten away or the player died. We will see all
of these come together as we get to these states.

5.5.2 Patrolling

There are two primary approaches that we can use to get our spider to patrol
around the game world. The �rst, and the one we will utilize for now, is to drop
empty game objects into our world and create an actual path that we want
the spider to follow. This means that for each spider we will have to create and
position these waypoints and assign them to the spider. The second approach
is to have the spider itself pick a random direction to go and to just take o�. The
best version to use is really going to depend on what you want the spider to be
doing and what you need out of the game that you are developing. For example,
if we want the spider to guard a speci�c building or cave, then it cannot just go
wander o� in some random direction, it will have to follow a speci�ed path. Then
again, if we just want a wandering spider on the level doing its own thing, then it
will de�nitely need to have the ability to randomly pick where to go.

We will begin with the scripted patrol mechanism for our spider. For our
�rst take at this, we will get our spider to patrol the edges of our test scene.
Create four Empty Game Objects (GameObjects � Create Empty) and place

171

Non-Player Characters

them roughly in the corners of the test level. Empty Game Objects do not
contain any components, hence the name empty; however, they do still have
a transform component as all objects that exist within a scene must contain
that component. Since they are empty and do not contain a Mesh Renderer
component it will not be possible for us to see them within our scene, however
we will still be able to select them within the Hierarchy panel. This is when
forming the habit of following good naming practices begins to pay some
dividends as we may end up with many various objects scattered about our
level that we cannot see and can only identify from the names that we have
given them. Figure 5.13 depicts a basic layout for these dummy objects, you
can see the four game objects because of the four visible movement widgets in
the scene. We have also gone ahead and named the empty objects as spider_
waypoint_01 through spider_waypoint_04. Now, it is not necessary that you
follow that naming scheme per se, but de�nitely utilize some naming scheme
that helps you to not only know what these objects are for but also which one
is which. We could construct this waypoint system by using Cubes (or other 3D
shapes) instead of an empty object. Once we have them in place, just disable
the Mesh Renderer component to make them invisible. By converting the
default colliders on these objects to triggers, we could use trigger events to
know when the spider has reached its target location. There is usually more
than one way to get a task accomplished when creating your behavior scripts.

Note
Figure 5.13 is a composited image. Unity’s standard behavior when
you select multiple objects is to place the gizmo in the center of all the
selected objects, not to provide individual gizmos as visualized within
that speci�c image.

172

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.13 A sample layout of the empty objects used for the spider’s patrol pattern.

It is now time to build the Patrol FSM that we designed earlier. Select the
Patrolling FSM from the drop-down list of available state machines on the
spider object. Within this state machine, we will need �ve variables and one
custom event as depicted in Table 5.5. Two of these variables are going to be
used for controlling the spider’s movement from the Inspector, remember
this is a great way to test, tweak, and �nalize our settings. The moveSpeed
variable will be used for how fast the spider actually moves, we will want this
as a variable so that we can tweak it, while the game is running until we get
a speed that not only matches how fast we would like the creature to go, but
also looks good with the animation of the creature. The �nishRange variable
is going to be used to determine how close we have to be to the waypoint in
order for the system to have considered us to have arrived at that location.
Generally speaking, we need some wiggle room within a game system to
get things to work and �ow smoothly. Since both of these are going to be
used within the Inspector, be sure to turn on the Inspector check box when
these variables are created. The other three variables are all used for our
waypoints.

The reason we will need multiple variables for those waypoints is that we
are going to be using them as a list of locations for the system to select
from when it is time to select a new location to move to. The most common
approach to handling a list of things within a programming environment is
to use something called an array, which leads to all of these variables that we
are going to need.

The nextTarget variable is going to be the next waypoint that the spider
is traveling toward, or from the design it is going to be the location that
the spider is moving to. The waypoints variable will store a list of all of the
waypoints that we want the spider to visit, in the order that we want the
spider to patrol them. The index variable will be used to specify which one
of the waypoints within our array of waypoints we are currently considering
using, more on this shortly.

Arrays are an interesting and extremely valuable variable type (actually a
data structure which is a method of organizing and storing our data within
a computer) as they allow us to store a list of things. The things that we
store in an array can be any of the standard variable types such as �oat or
string. The array can also store a list of objects, such as Empty Game Objects
that have been placed in a speci�c scene. Since arrays are lists of things,

173

Non-Player Characters

TABLE 5.5 Variables and Single Event Needed for the Patrolling FSM

Events Variables and Types

Out of Bounds index � Int

�nishRange � Float � Inspector

moveSpeed � Float � Inspector

nextTarget � Game Object

waypoints � Array � Game Object � Inspector

that means we can navigate through our list in order. For instance, when
you have a to-do list or a shopping list you can scan through it from top to
bottom until you �nd the item or thing that you are speci�cally looking for.
We can also know where we are within our list, for instance someone could
ask “how far along are you on that to-do list?” and you could glance at it
and immediately tell them that you are on the fourth thing or �fth thing or
whatever. This location of where we are within the array is referred to as the
array’s index value, hence our index variable that we have created.

Arrays also know how big they are which is equivalent to knowing how many
things are in them, or at least should be in them. After creating the waypoints
variable, change its Array Type to Game Object and make sure to select the
check box for the Inspector, we are going to make this a variable that is visible
within the Inspector Pane so that we can tweak it from there. Before leaving
this variable, notice the text box labeled Size. This array property is how large
the array is, or how many things we can put into it. In our case, this will equate
to how many waypoints this particular spider will have within her patrolling
pattern. If we want to add or remove waypoints, we would change this Size
property to whatever value we would like, we could also adjust this value
from the Inspector if the array is set to be an Inspector visible variable as
ours�is. Do not worry about Element 0 through 4 just yet, we will get to these
as soon as we �nalize the patrolling FSM. Figure 5.14 depicts the skeleton of
the Patrolling FSM with all of the states connected through the appropriate
transition events. Later, we will return to this state machine to add another
state for the spider to �nd the nearest waypoint and continue patrolling, but
we will work with that once we have a basic patrol system up and going.

Note
The Tooltip textbox for variable properties allows us to enter some
text that will display next to the mouse cursor when a user hovers the
mouse over the variable within the Inspector. When working with other
developers, it is a good idea to provide a description of what the variable
will allow the developer to change when modifying it. The Tooltip will have
no impact on a variable that does not have the Inspector box checked.

174

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.14 Basic skeleton of the Patrolling FSM.

During the design phase for this particular state machine, we laid out the
essential logic of what we want it to do, but now that we know we are
going to have to use something called an array to store all of our various
waypoints, we are going to have to take a moment to look at how arrays
function. The approach to using an array is to pull the current value out of
the array and store it in another variable, we called this nextTarget. That
index variable is keeping track of where we are located within the array of
waypoints. Now, here is the tricky part about this: each time that we grab a
waypoint from our array (we are not removing it, it is still there we are just
copying it) we need to increase that index variable so that the next time
we take something out of the array we will know to get the following item.
Another way to look at this is when we write a long list of numbers from
one page to another; many times�we will keep our �nger on the number
that we are writing down. Then,�when we �nish writing that number, or
copying it, we move�our �nger down that list and copy the next number. In
this example, our��nger is serving as the index variable, it is keeping track
of where we are within the array and if we do not move our �nger we will
keep copying that same number over and over.

We need to be careful with that index variable that we are using to reference
items within the array. The value of that index variable must fall within the
valid range of our array. For instance, if we have an array of size 10, then
the index variable could be anything from 0 to 9. Notice that was not 1–10.
Numbering within computers begins at 0 that is the �rst number. For us, we
begin counting at 1 because 0 means we do not have anything so we tend not
to count that speci�c value, though when looking at numbering systems we
actually do start at 0. Back to point, our index variable, for this speci�c spider,
must be anything with the valid range of our array size, which is currently set
to 4 that means our index can be anything from 0 to 3. If our index variable is
out of that range, the computer will give us an “index out of bounds” or “index
out of range” error message. Errors are bad, we do not like errors and would
prefer to avoid them. So, in order to avoid that out of bounds error, we are
going to have to be careful with what we do with the index variable.

With all of our variables and events created and the basic state machine
structure in place, we will now put together the actual syntax of the actions that
we are going to need for this. We will begin with the Get Next Waypoint state:

 1. Add an Array Get action.
 a. Select waypoints from the drop-down list for the Array value.
 b. Switch to variable mode (the button with two lines) for Index and

select the index variable.
 c. For Store Value select the nextTarget variable.
 d. Leave every frame turned o�, as we only want to do this once each

time we are in this state.
 e. For the Index Out Of Range event, select the Out of Bounds event

transition that we have already connected to our state.

175

Non-Player Characters

 2. Add an Int Add action below the Array Get action.
 a. Select the index variable from the drop-down list for Int Variable.
 b. Enter a value of 1 in the Add text box.
 c. Leave Every Frame turned o�.

This state is a deceptively simple looking sequence of actions, but there is
a bunch of activity going on here and the power of the array is starting to
come to the forefront in this. We begin with the Array Get action. With the
way that PlayMaker handles arrays, the values within each individual index of
the array can only be accessed through an Array Get or Array Set action. This
is because the system is recognizing the array as a variable type, so the visual
scripting interface only allows us to do stu� with the array as a whole entity
if we were to drop the array in to a variable selection slot. This is very nice for
us as it allows us to keep our array nice and safe and makes it more di�cult
for us to accidently alter the values that are stored within it. What we are
doing in the Array Get is grabbing the actual Game Object (which happens
to be a waypoint) from the index location within the array. So, if the value of
index is 1, then we are grabbing the second waypoint in our list of waypoints
(remember numbering started at 0, so 1 would be the second on the list). On
the other hand, if index was 3 we would be getting the fourth waypoint from
the list. At any rate, whichever waypoint we are getting we are letting our
nextTarget variable equal that waypoint so that we can reference it through
the nextTarget variable.

The Event that is associated with the Array Get action is an error or boundary
condition event. Boundary conditions are the extreme values that can be
associated with things, such as arrays, within the set of values that are valid.
For instance, in our waypoints array, the boundary condition values would
be 0 and 3, beyond those values we are outside of the valid range for this
particular variable and have therefore exceeded its boundary. As a general
rule, when programming, you want to test the boundary conditions heavily
as that is the place that our programs are most likely to break and lead to
errors. This speci�c event is �red whenever the value of index is outside
of the valid range of values for our array. If we were to try to grab an array
element outside of the valid range, it would not exist and odd behavior
would be the result for our game. In this case, we can handle the situation of
going out of bounds very cleanly through this Event condition included with
the Array Get action. As a thought question, before we jump right into it, if
the value of index were outside of the valid range what should we do, how
should we handle that? For the solution, follow these�steps:

 1. Select the Reset Counter state.
 a. Add a Set Int Value action to the state.

 i. Select index for the Int Variable.
 ii. Enter a value of 0 in the Int Value textbox.
 iii. Leave the Every Frame turned o�.

176

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

In the event that our index variable has exceeded the valid range of values
for the array, we will utilize the Out of Bounds event which in turn will send
us to Reset Counter. Once inside the Reset Counter state, we will use the Set
Int Value action to speci�cally set that index variable back to a valid value for
the waypoints array. Speci�cally, we will reset the index back to the �rst value
within the array of waypoints.

Back to the Get Next Waypoint state for the �nal action, Int Add. The Int Add
action will add a value to what is currently within an int variable. For instance,
if our index variable is currently at 1 the Int Add action will add another 1 to
it making the value stored within index equal to 2. We can add any values we
want to the Int variable, as long as the value being added is another integer
value. We can even add the value of another integer variable to our variable
if we want to. Figure 5.15 provides a graphical representation of how these
two actions are working together allowing us to navigate through our list of
waypoints, one at a time.

The �nal state in this machine to construct is the Moving state which will be
responsible for actually moving the spider to the next waypoint. This will
be performed in three distinct steps: turn to look at the waypoint, move
toward the waypoint, and play our walk animation while we are moving.

 1. Select the Moving state.
 a. Add a Smooth Look At action.

 i. For Target Object, use the variable selection list and choose
nextTarget.

 ii. Select the check box for Keep Vertical.
 iii. Select a value for Speed, we went with 5.
 iv. All other values can be left at default.
 b. Add a Play Animation event next.

 i. Select the walk animation from the drop-down list (or run).
 ii. Other values leave at default.
 c. Add a Move Toward action as the last event in the sequence.

 i. Use the variable selection list to assign nextTarget to the
Target Object.

 ii. Turn Ignore Vertical on.
 iii. Set the speed to be our moveSpeed variable from the

variable�list.
 iv. Set the Finish Distance to be our �nishRange from the

variable�list.
 v. Select FINISHED for the Finish Event.
 vi. Leave the others as default.

The Smooth Look At action is used to get an object within a scene to look
at something else, to turn and face that something else. We can have it turn
to face an object or a speci�c location somewhere within the scene. In our
case, we are having our spider turn to face an object, the next waypoint that

177

Non-Player Characters

it is going to go to. Even though nobody can actually see the waypoint, it
does exist in the game world and does have a position. The Smooth Look
At (or even the Look At action) will grab that position and do what needs
to be done to get the object to turn to face it. This saves us a tremendous
amount of work on our own as far as trying to �gure out which way we need
the spider to turn, we can let Unity �gure that out for us. The Keep Vertical
check box is just having the object ignore looking up or down to see the
target, and there will be times that we want our object to use the vertical
and others when we do not. This is one of those check boxes that it is easy to
forget and end up with slightly odd behavior from our characters later.

Note
Remember that nearly all of the actions that we use within PlayMaker are
actual methods within the Unity API. This means that if or when you decide
to study C# scripting for yourself, you will be able to leverage much of your
PlayMaker knowledge as you already know many of the things that you
will need to do. As an example, the Move Toward action equates to the
Vector3.MoveToward() method within the API. If you know how to use the
action you basically know how to use the method, very nice.

178

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

index = 0
nextTarget = first waypoint
Index =0 + 1

index = 1
nextTarget = second waypoint
index =1 + 1 = 2

index= 2
nextTarget = third waypoint
index =2 + 1 = 3

index = 3
nextTarget = fourth waypoint

Character moves to nextTarget

index = 0

index =3 + 1 = 4

index = 4
nextTarget = nothing
Index Out Of Range event

FIG 5.15 Logical �ow through the array of waypoints.

We have used the Play Animation action before, so we will not discuss it
again here. The Move Toward action is used to get one object to move
toward either another object or a speci�c location within the scene. In our
case, we want our spider to move toward the next waypoint from the array
of waypoints. Just like with the Smooth Look At, the Ignore Vertical will have
the system ignore any di�erence between the object and its target vertical
position. This is good, because if they are not perfectly aligned vertically,
then our spider might end up creeping into the air or slithering in to the
ground as it attempts to move toward the next target leaving us with either
a �oating spider or a spider with only its head sticking out of the ground.
Our Max Speed will determine how fast the spider moves and we will tweak
this from the Inspector in a few minutes. Finally, the Finish Distance will be
the error tolerance for how close the spider has to get before it moves to
the next one, something like the neighborhood rule for getting the out at
second base during a double play in baseball, for those that may be familiar
with the sport.

With the state machine constructed for the spider, it is time to test and
tweak�it. Back in the Unity Scene Editor, make sure that you have the spider
object selected so that we can see all of its properties within the Inspector
Pane. The �rst thing we will do is populate that array with the empty Game
Objects that we have already created. The easiest way to do this is to drag
a waypoint from the Hierarchy Panel and drop it into the corresponding
location in the array. For instance, spider_waypoint_01 should be added to
Element 0 in the array. When doing this, do not release the mouse button
once you have selected the waypoint from the Hierarchy, you want to grab
it with the mouse and drag it over to the Element you would like to add it�to.
With the waypoints populated as seen if Figure 5.16, it is time to run our
game and see what happens. Notice when we press the play button nothing
seems to be happening, why? We can see the spider doing its animation, but
it is not�moving.

In order to get our spider moving, we will to have to give the moveSpeed
variable a value in the Inspector. We are going to start with a value of
1�and�the spider takes o� moving. If you are having di�culty seeing
the spider with your game view, switch back to the scene view so you
can see�the whole scene with the spider moving from that perspective
instead.�The scene view is very valuable when tweaking things. We have
now run into our next little issue. The spider walks along until it just
stops walking and kind of bounces back and forth. It is really close to the
location of the next waypoint, but it is not there exactly. Currently, our
error tolerance for this is set to 0; obviously, this is not going to work. Try
increasing that �nishRange value until your spider gets unstuck and goes
on to the next waypoint. Make sure that your spider correctly navigates
through the four waypoints, making any adjustments you need to these
two variables. Our �nal settings for these were a moveSpeed of 0.8 and
a �nishRange of 1.5. Our spider now patrols, we are ready to move on,
though play your game at this point to double-check and make sure it is
working as expected.

179

Non-Player Characters

Note
If your spider is stubbornly refusing to move, make sure that it has a
Character Controller component attached to it within the Inspector.

Video
We can extend the patrolling behavior of our spider by either telling it
to not patrol or telling it to pick its own random path to follow instead
of using waypoints. These additions to our spider are demonstrated in
the video “Advanced Spider Patrol” found in the videos section on the
companion website.

5.5.3 Spotting the Player

Now that both our spider and player character can move around in the scene
it is time to get them to respond to each other. Sancho will already respond
to the spider, because the player will respond to the spider. By this, we mean
to say that Sancho is already capable of charging into the fray to �ght the
spider that is handled by the player pressing the buttons to move Sancho

180

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.16 Starting settings for the Patrolling FSM in the Inspector.

closer to the spider. The spider, on the other hand, must make this decision
on its own. In order to get this to work, we will need the spider to recognize
when Sancho is nearby and then for the spider to actually close in and pursue
the player until the spider can �nally bite or kick at Sancho. If we pause for
a moment here, we will recognize that not only do we already have a very
strong idea of how to do this, but the essential components are already in
place, they just need some tweaking.

The �rst step that we need to accomplish is for the spider to notice Sancho
nearby; although if we think about it all the spider is actually noticing is a
Game Object with the Player tag, this may prove useful later. For this, we will
return to our Controller state machine that we built earlier. At the time that
we built it, we left the detection range set to 0, this is found in the Patrol state
of the controller. If we were to increase the value of that detectionRange
variable that we have already created, then we should be able to �nd a nice
threshold range for our spider’s sensitivity to the presence of Sancho. At the
moment, we just want to get a ballpark idea to make sure that our transition
from Patrolling to Pursue is working. We will go ahead and run the test scene
and keep increasing the detectionRange variable within the Inspector until
the Controller transitions from the Patrol state to the Pursue state, as seen
in Figure 5.17. As it turned out, with our current scene a value of 7 got the
spider to transition to the Pursue state indicating that the spider now knows
Sancho�is there.

181

Non-Player Characters

FIG 5.17 PlayMaker editor window, the current state is bordered in green while the game is running.

Our next step is to transition out of the Patrol state and into the Pursue state
within the controller. Our Pursue state is going to be responsible for a couple
of di�erent things: It needs to switch the Pursue state machine on which will
handle the actual chasing of the character around the scene, it needs to be
able to go back to the Patrol state if the character happens to get away, and
it needs to be able to transition on to the Attack state if the spider gets close
enough to bite at the player. Before looking at the actual solution below,
take a moment to consider how this could be done based upon what we
already know and have done thus far, as we already have the information
we need and have used the actions that we are going to use except for one
action which will be new. Although, this state could be constructed without
the new action and only using ones that we used to construct the Patrol
state earlier.

 1. Select the Pursue state in the Controller state machine.
 a. Add the Player Lost transition event.

 i. Connect the transition to the Patrol state.
 b. Add the In Range transition event.

 i. Connect the transition to the Attack state.
 c. Add an Enable FSM action.

 i. Select the Pursue FSM.
 A. Enable set to true.
 B. Reset on Exit set to true.
 ii. Add a Get Distance action.
 A. For Target use the variable selection option and select

enemy.
 B. For Store Result store it in the playerDistance variable.
 C. Do this every frame.
 iii. Add a Float Compare action.
 A. Float 1 is playerDistance.
 B. Float 2 is detectionRange.
 C. Greater Than will use the Player Lost transition event.
 D. Do this every frame.
 iv. Add another Float Compare event.
 A. Float 1 is playerDistance.
 B. Float 2 is attackRange.
 C. Less Than will use the In Range transition event.
 D. Do this every frame.

The only new action in this list is the Get Distance action. We could have done
the Find Closest that we did in the Patrol state, but we are going to have a
single-minded kind of spider such that once he �nds a target he stays with
that one until it is dead or escaped. This Get Distance action, like the Find
Closest action, allows us to determine the actual distance, as a �oat value,
between our source object and the target object. Based upon this distance,
we will perform di�erent transitions.

182

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Now that the spider can detect the player, it is time to get the spider to
chase after Sancho. We actually already know how to do this too, we will do
it the exact same way that we did the waypoint navigation, except instead
of using an array of waypoints with the Move Toward action, we will just use
the Sancho game object that is in the scene and the spider will then chase
poor Sancho wherever he goes. You may have noticed this as a possibility
while building the waypoints and testing the scene if you grabbed one of the
waypoints and moved it around while the game was running, the spider did
what needed to be done to try to catch that waypoint.

 1. Select the Pursue state machine not the Pursue state within the
Controller machine.

 a. Create a new variable of type �oat named chaseSpeed.
 i. Make sure that Inspector is turned on for it.
 b. Create another variable of type Game Object named target.
 c. Change the default State 1 to a di�erent state name, we went with

Chase for ours.
 i. Add a Get FSM Game Object action.
 A. Select Controller from the list for FSM Name.
 B. Select enemy from the list for Variable Name.
 C. Store Value should be target.
 ii. Add a Play Animation action.
 A. Select the run animation.
 iii. Add a Smooth Look At action.
 A. Use the variable selection for Target Object to choose

target.
 B. Turn the check box for Keep Vertical on.
 iv. Add a Move Toward action.
 A. For the Target Object use the variable selection to choose

target.
 B. Turn on the check box for Ignore Vertical.
 C. Set Max Speed to be the chaseSpeed variable.
 D. Leave the other default values as they are.

We have seen many of these steps before, there are only two things that
we would like to discuss before moving on. The Get FSM Game Object
action is a new one for us. We can access the variables that are within other
state machines by using the Get FSM and Set FSM actions followed by
the appropriate variable type that we are after. What we are doing here is
grabbing the game object that was tagged with Player from the controller
state machine and making sure that our Pursue state machine is chasing after
the same object that originally got the spider’s attention to begin with. The
every frame really is not necessary, as the only time that the target object
from the Controller would change would be if the spider had lost sight of
the object and returned to the Patrolling state. If it were to return to the
Patrolling state then the Pursue state machine that we are currently in would
have been deactivated. So, you can either turn the Every Frame on or o�, it

183

Non-Player Characters

should not impact the functionality of our system either way. Finally, the run
animation was selected as we want it to appear as though the spider is being
aggressive and move more quickly to attack something or defend its territory
than when it was just trudging along doing its own thing.

The spider now chases Sancho all over the place and as we tweak the
chaseSpeed variable we can get a smoother looking animation sequence
as well as a more challenging speed. In this tweaking process, you may
want to consider changing the animation speed, like we did to get Sancho
to run backward, to get a better timing between the speed that the spider
is moving at and the speed that the animation is playing at. Now that the
spider is chasing Sancho as aggressively as he is, we are ready to implement
some attacking. Play the game before moving on to make sure that this
stage is working as expected, if the system gets stuck in the attack state
then we are good.

5.5.4 Attacking the Player

In this step, we will work on getting the spider to do a basic attack and to
detect when it has hit the player, we will actually leave hurting the player
for the next step. It is a good idea to break your work down into small
sub-problems or sub-projects that can be more easily tested. For instance,
if we were to construct all of this in one go and it did not work correctly it
would be far more di�cult for us to track down exactly which part of the
implementation is not working correctly. That may seem like a trivial thing
to worry about, but it is an infuriating one when we run into it by getting
over con�dent and implementing too many pieces at one time, which we are
trying to avoid. We will begin by returning to our Controller state machine
and �lling in the Attack stage as depicted.

 1. Select the Attack state in the Controller state machine.
 a. Add the Player Lost transition event and connect it to Patrol state.
 b. Add an Enable FSM action.

 i. FSM Name should be Attacking.
 ii. Reset on Exit should be on.
 c. Add a Get Distance action.

 i. Target is enemy.
 ii. Result should be stored in playerDistance.
 iii. Every Frame should be on.
 d. Add a Float Compare action.

 i. Float 1 should be playerDistance.
 ii. Float 2 is attackRange.
 iii. Greater Than will lead to the Player Lost event.
 iv. Do this Every Frame.

The core of the Attack state is now in place. There is one section that we
have left out, but it has been left out intentionally at this point as it is part
of causing damage to the other object that is being attacked. Since we do

184

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

not plan on getting that up and running until the next section, there is no
point in trying to get it working just yet, rather we will focus on the basic
attack pieces and detecting that collision for right now. We have used all
of the actions from above previously, so there is nothing new to discuss
about them. Moving onto the Attacking state machine, we can construct the
following:

 1. Change the Start 1 state to Attack.
 2. Add another state named Cool Down.
 3. Add a FINISHED event to both states and connect them to each other.
 a. Attack connected to Cool Down.
 b. Cool Down connected to Attack.

 4. Select the Attack state.
 a. Add a Play Random Animation action.

 i. Change the number of animations to 2.
 ii. Set animation 1 to attack1 with a weight of 0.6.
 iii. Set animation 2 to attack2 with a weight of 0.6.
 iv. Set the Finish Event to FINISHED.
 5. Select the Cool Down state.
 a. Add a Play Animation action.

 i. Select idle as the Anim Name.
 b. Add a Random Wait action.

 i. Select 1.5 for Min.
 ii. Enter 3 for Max.
 iii. Finish Event should be set to FINISHED.
 iv. Real Time should be turned on.

Once again, we are familiar with all of these actions, except for one. By now,
we are beginning to see that these actions are reused many times in di�erent
states and that with our current knowledge of the available actions we can
already build some pretty interesting behaviors. But, back to the point, the
new action is the Random Wait action. There are two varieties of this, the
Random one, which we are using, or a non-random one that is just called
Wait. In either case, they work by pausing in the current state, or speci�cally
by not allowing the current state to end, until after the speci�ed time has
been reached. We can do this in either Real Time, which would be seconds
through the use of a time scale applied internally, or in game time without
utilizing any type of time scaling. At �rst glance, it may seem as though we
could have done this all in one state, play our attack animation and then wait
right there before starting the state again. The problem with that approach
is that it would have had the spider be static, no animation, between the
attacks. Going with the approach that we did use we can have the spider play
its idle animation between attacks. At this point, we should go ahead and test
our system thus far and make sure that the spider is playing an animation,
waiting, and playing another one.

For the collision system, we will need to add some colliders to our spider
object. But it is not quite as simple as just adding a collider component to

185

Non-Player Characters

the spider itself. What we really need to do is add colliders to the parts of the
spider that will actually be “attacking” the player, which will involve a little bit
of research. What we are going to do is manipulate a view in the scene editor
such that we can see the Sancho character and also the spider when it is close
enough to attack. Once we have the view setup we can go ahead and run the
game and click on the Scene tab to return to this scene view while the game
is running. After waiting a few moments, our spider will come in to the view
and we can pause as it starts to attack the character. Figure 5.18 provides a
display of the game paused just as the spider is trying to bite Sancho. Now for
the catch, �guring out exactly what that is, notice how that part of the spider
has moved forward. This movement is being done within the animation and is
not actually a�ecting the position of the spider itself at all. Even though those
teeth have moved forward, the spider is still right where it was. This means
that if we were to attach a collider component to the spider, that component
would not have moved with the teeth, so we need to �nd those teeth.

Note
Pausing a running game to look around in the Scene editor or the
Inspector pane to �nd something is very valuable. Even more valuable is
the ability to advance the game one frame at a time by clicking the frame
advance button to the right of the pause button. Through this tool, we
can move the game forward one frame at a time and really see what is
going on.

186

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.18 Spider caught as it bites Sancho, notice the teeth.

With the game still running, but paused, click the triangle next to the spider
within the hierarchy view to open up all of the child objects of the spider as
shown in Figure 5.19. In order to �nd those teeth, we are just going to start
clicking on the children and the scene editor will show us where that child
object currently is in the scene. To get a better feel of what we are looking
at, once a child object is selected, go ahead and use the Next Frame button
to move the game forward a couple of frames and see how that piece is
moving, if it is moving. We selected the very �rst object, called Box01, which
appears to be connected to the spiders head or something. Using the Next
Frame button, we were able to play the game forward and see that this Box01
object moves with the animation. The other objects move with the animation
as well, but Box01 was the �rst one we tried and it solved the problem at
hand, the Spider01 child object would have been a good selection as well.
Ultimately which one we select only matters based on one criterion; does it
move with the animation. If it does then that child object will work just �ne
for what we want.

We can go ahead and stop the game running now that we know what part
of the spider we are after; in our case, we will be using Box01 as the parent
object for our next step. What we are going to do next is to create a new
Game Object, like we did with the cubes and the ground a couple of chapters
back, and attach this new object to the Box01 child of the spider. Once it
is a child of Box01, we can then reposition the object so that it aligns with
the mouth area of the spider. This will allow us to detect collisions with the
mouth when it hits Sancho, as it turns out while the spider is kicking its
mouth moves forward as well.

187

Non-Player Characters

FIG 5.19 Child objects of the spider in the scene.

Note
There are two types of collisions: blocking collisions and trigger
collisions. In a blocking collision, the objects cannot pass through each
other. In a trigger collision, they can pass through each other.

 1. Make sure that the game is not currently running.
 2. Add a new capsule object to the scene (GameObject—3D

Object—Capsule).
 3. Make the capsule a child of Box01 by dragging it in the Hierarchy

panel onto Box01.
 4. Rotate, scale, and position the object so that it is aligned with the

spider’s mouth.
 a. You should now have something similar to Figure 5.20.

 5. Turn o� the Mesh Renderer component of the capsule object.
 6. Click the check box for Is Trigger within the Capsule Collider

component.
 7. Rename the capsule object, if you want to, something like Jaws_

Collider is pretty cool.

The �rst step in responding to an attack collision is now in place after the
construction of the capsule Game Object. The next step is to add some
functionality to this object through a State Machine. In order to implement
the design that we created previously for this character, we will need one
variable and one custom event in our new state machine. The new event is

188

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.20 Capsule Game Object over the spider’s mouth.

for when the capsule hits the player, as such we will call this event Hit Player.
The variable is used to track what it is that the spider is supposed to be
attacking and therefore what it should be colliding with. For this example,
we have created this variable as a Game Object type and named it target. We
are not going to be able to complete this state machine until after we have
completed the health system within Sancho. But we will drop in the basic
pieces here.

 1. Change the name of State 1 to Idle.
 a. Add the Hit Player transition event.
 b. Add a Trigger Event.

 i. Trigger is On Trigger Enter.
 ii. Collide Tag is Player.
 iii. Send Event is Hit Player.
 iv. Store Collider is target.
 2. Create a new state name Hit.
 a. Connect the Hit Player from Idle to this state.
 b. Add a FINISHED transition event and connect to Idle.

The actions that we will need within the Hit state cannot be added
until after we have the health system constructed within Sancho. The
Trigger�Event action is a new one and one that it is worth a few minutes
of looking at as we need to know how to get collisions out of Unity and
respond to them for many di�erent game-play systems. To begin, this
action requires a Collider component that is of a Trigger type. We took
care of this when we constructed the Capsule Game Object and turned
on the check box for the Is Trigger within the collider component.
There are three distinct types of events that can occur with triggers,
as depicted in Table 5.6. It is important to keep these in mind as there
are many di�erent things that we could use triggers for. For instance,
by using the On Trigger�Stay�we can have the system perform some
action, or sequence�of�actions, as long as an object is within a certain
area of the scene that is de�ned by a trigger that we have put out there
(Game�Object�with a Collider component set to Is Trigger and the Mesh
Renderer turned�o�).

189

Non-Player Characters

TABLE 5.6 Three Di�erent Trigger Events That Can Occur within Unity

Trigger Function Purpose

On Trigger Enter Event occurs on the frame that the object collides with or enters into the area
de�ned by the trigger collider.

On Trigger Stay Event is called every frame that the object is still within the boundary that is
de�ned by the trigger collider.

On Trigger Exit Event is used on the frame that the object leaves the region de�ned by the trigger
collider and is no longer in contact with it.

The next three pieces of the Trigger Event action de�ne what object we are
colliding with and what to do. We begin with the Collide Tag. Any object can
collide with any other object within a scene provided they both have colliders.
However, we usually only care about speci�c collisions and we can use the
tag system within Unity to be able to �nd and group the objects that we care
about. In this case, the only collision that we care about with the spider’s
mouth is when it happens to hit some other object that is tagged as a Player,
any other collisions will be ignored by this action. If we have had a collision
with the object tag that we are interested in, the action will proceed with the
next two steps. The �rst step is what transition event it should do as a result of
this collision and the second step is to keep the thing that we hit in a variable
in case we want to do something with that object, such as cause damage to it.

Except for a couple of actions to �nish of the functionality of the system, our
spider attack is ready and functional, we will move on to the health system for
Sancho and then return to �nalize the missing actions within this state machine.

5.5.5 Hurting the Player

We now have the pieces in place for the spider to attack and if we were to
test our game so far, the spider appears to attack. It spots Sancho, runs up to
Sancho, and then proceeds to begin attacking him with two di�erent attack
animations. It also appears as though the collider that we constructed is
intersecting with Sancho. It is now time to get the other piece of this puzzle in
place. This health system may have many states within it, but as we saw in the
design stage, it is not as complex as it may appear. It just has many small pieces
that we need to take our time and construct as we go along. Table 5.7 lists all
of the events and transitions that we will need within this state machine and
Figure 5.21 displays the skeleton of it constructed within PlayMaker.

The damage variable is used to indicate how much damage is caused to Sancho
by the attack. We are going to allow the object that collides with Sancho to
specify this damage value that is going to make it possible for di�erent things
within the scene to cause di�erent amounts of damage. And if the damage
variable of the attacking object is set as an Inspector variable, then we could
adjust that damage amount from the Inspector panel rather than having to
come back in to the PlayMaker state machines to adjust the values. The health
variable will store the total amount of health that Sancho currently has while
the maxHealth is the maximum amount that he could have. The maxHealth

190

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 5.7 Events and Variables Needed for the Health State Machine of Sancho Panza

Events Variables and Types

Died damage � Int

Hit gotHit � Bool

Keep Going health � Int

isAlive � Bool

maxHealth � Int � Inspector

will be utilized when initializing the health of the character and by making it an
Inspector variable we can enter any value we like directly within the Inspector
panel for this object. For immediate testing we will give this maxHealth a value
of 20 knowing that we will change it in the Inspector to 100 later.

The two Boolean variables are used for the state machine to know if Sancho
has been hit by something as well as if Sancho is still alive or not. It will be
important for other objects to know if Sancho is still alive as well, consider
the Attack state from the spider previously, it will keep attacking until
Sancho has escaped or is no longer alive. The gotHit variable is really just
going to be used as a test to determine whether we have been hit, the same
thing could have been accomplished through the use of a Global Event
within PlayMaker, but that is something that we will look into later. Now we
will populate these states with the needed actions, we will begin with the
Initialize, Living, and Hurt states.

 1. Select the Initialize state.
 a. Add a Set Int Value action.

 i. Int Variable should be health.
 ii. Int Value should be the maxHealth variable.
 iii. Do not do Every Frame.
 b. Add a Set Bool Value action.

 i. Bool Variable is isAlive.
 ii. Bool Value is checked.
 iii. Do not do Every Frame.
 c. Add a Set Tag action.

 i. Tag is Player.
 2. Select the Living state.
 a. Add a Bool Test action.

 i. Bool Variable is gotHit.
 ii. Is True is the Hit event.
 iii. Every Frame is checked.

191

Non-Player Characters

FIG 5.21 All of the states and transitions in place for Sancho’s health state machine.

 3. Select the Hurt state.
 a. Add an Int Add action.

 i. Int Variable is health.
 ii. Add is damage.
 iii. Every Frame is not checked.
 b. Add a Play Animation action.

 i. Anim Name is self-hit.

We will pause here and take a quick look at these actions and states that
we have constructed thus far. Beginning with the Initialize state, we see
that we are setting the health and isAlive status variables for Sancho. The
only new action in this state is the Set Tag action. This action serves two
purposes. The �rst is a safety net just in case we forgot to set the tag of the
object in the Inspector. The second purpose, is to change the tags later to
help the spider behave and quit attacking the dead Sancho. If you recall,
we utilized a Find Closest action in the spider and it looked for the closest
object with a speci�ed tag, in this case it was Player. Once the target
that the spider is attacking is dead, we will switch this tag on the target
to something other than Player and the spider will then ignore it. This is
going to prevent the spider from looping through those states that it has
and instead short circuit that whole process by making the thing it just
attacked no longer a Player tagged object and therefore not anything that
it cares about.

The living state is simply checking the status of that gotHit Boolean variable
every frame. This variable will be turned to true by something when it hits
it, for instance when the spider collider triggers the collision with Sancho
we will reach in to this state machine and set this value to be true causing
Sancho’s health logic to proceed to the next step. We could have also used
something called a Global Event within PlayMaker for this same e�ect.
A�Global Event is one that can be triggered by anything anywhere. So the
spider trigger collision could, instead of setting this Boolean variable to true,
trigger that Global Event. The use of the variable instead of the Global Event
is a purely personal choice in this particular situation, there is no de�nitive
advantage one way or the other.

The final state that we have populated thus far is the Hurt state. This
one is fairly self-explanatory as we have seen all of these actions in
other states before. When the character gets hit, it will subtract a certain
amount from its current health and play some type of animation to
indicate to the player that the character has been hit. This is important as
we need to provide feedback to the player so that they are aware of what
is happening within the game world. When we get to the GUI elements
later we may return to this and add some numbers that rise from Sancho
and fade away indicating how much damage he has received, which
could work nicely with the health bar that will be adding at that point
in time. Now, we will finish this health management system for our
character.

192

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 1. Select the Health Check state.
 a. Add an Int Compare action.

 i. Integer 1 is health.
 ii. Integer 2 is 0.
 iii. Equal goes to the Died event.
 iv. Less Than goes to the Died event.
 v. Greater Than goes with the Keep Going event.
 vi. Do not do this Every Frame.
 2. Select the Dead state.
 a. Add a Set Tag action.

 i. Tag is Dead (will need to create a new tag for this).
 b. Add a Play Animation action.

 i. Anim Name is die.
 c. Add a Set Bool Value action.

 i. Bool Variable is isAlive.
 ii. Bool Value is not checked.
 iii. Every Frame is not checked.
 d. Add an Enable FSM action.

 i. FSM name is Actions.
 ii. Enable is not checked.
 iii. Reset on Exit is not checked.
 iv. Repeat this for the Movement and Rotate FSMs as well.
 3. Select the Reset state.
 a. Add a Set Bool Value action.

 i. Bool Variable is gotHit.
 ii. Bool Value and Every Frame are not checked.

Beginning with the Health Check state, we have used an Int Compare
action, which is the same thing as the Float Compare we have used before
except for integer values, to make a decision based upon the current health
value of the character. If this health value is at or below 0 we can go ahead
and transition on to the Dead state; otherwise, we will begin resetting
everything to return to the Living state and await another damaging hit
from something.

The Dead state has some interesting pieces within, we have seen all of these
actions but it is the reasoning and logic behind their use that makes this one
interesting, as the logic for behaviors begins to really take form for us. First,
we will change the character’s tag to Dead, which will require creating a new
tag for that, so that the spider will ignore this character when looking for the
closest thing to attack. Next, we will turn o� all of the other state machines
within Sancho so that the player cannot keep running around and doing
stu� after they have died. If we were to allow a respawning system (which
we will later), we would need to link it in here, but that is a topic for a later
time. The reset state is simply resetting the Bool gotHit variable back to its
initial value of false and handing control back to the Living state to await
another hit.

193

Non-Player Characters

5.5.6 Connecting the Attack and Health States

Sancho is now ready to be hurt by things in the world and the spider is ready
to hurt Sancho, all we need to do is to connect these two sections together
for our �nal piece of functionality on all of this. Sancho’s health management
system is correctly constructed and the work that we need to do resides in
the spider and in the spider collider object that we attached to Box01 earlier,
for ease of reference we named our spider collider object Jaws_Collider. We
will begin with the �nal connections for the spider object.

 1. Select the Attack state in the Controller state machine of the spider.
 a. Add a Get FSM Bool action.

 i. Game Object is Specify Game Object.
 ii. For the object itself select the variable option and select

enemy.
 iii. FSM Name is Health, this will not be available in the drop-down

menu and you will have to type it, make sure spelling and
capitalization match the name of the FSM from Sancho.

 iv. Variable Name is isAlive, once again will have to manually type
it, make sure capitalization and spelling match.

 v. Store Value is targetAlive.
 vi. Every Frame is checked.
 b. Add a Bool Test action.

 i. Bool Variable is targetAlive.
 ii. Is False is the Player Lost event.
 iii. Every Frame is checked.

When we built the Attack state earlier, we allowed the spider to leave this
state if the player object was escaping so that the spider would begin
chasing again. Now, we are adding the ability of the spider to leave this state
whenever the player object is dead. In order to do this we will have to utilize
one of the Get FSM Value actions that we have already used, this time to get
the FSM value from another object rather than from our own object. Our
enemy variable has been used to identify which object it is that the spider
is attacking so; therefore, we will use that to reference the FSM of the object
that we are attacking as well. By using a variable for the object, we are not
able to select anything for the FSM or the variable name. This is because at
the moment of development, the system does not know what object the
enemy variable is referring to, but once the game is running that variable will
refer to an object. The trick here is that any other objects we allow the spider
to attack, by giving them the tag of Player, we need to make sure that they
also have a Health FSM and an isAlive variable so that this will work for all of
them. This is essentially allowing all objects to share the same framework of
a health management system. When typing in the FSM name and variable
names, make sure that the capitalization and spelling matches that which
is in the object. This is a common place for errors to occur and they can be
deceptively di�cult to �nd. Finally, we add a Bool test on the value that we

194

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

have gotten from the health management system and can kick the spider
controller out of attacking and back to patrolling.

Note
When programming, or creating state machines, there is a di�erence
between myVariable and myvariable. The systems are case sensitive and
will consider those to be two distinct and unique variables.

Next, we need to move on to the Jaws_Collider object and the state machine
that we constructed for it. What we need to add to this one is within the
Hit state. Once the system has detected a collision with a Player tagged
object we want to cause damage to that object by reaching in to its health
management system and setting both the gotHit variable to true and the
damage amount to whatever damage we are going to allow to be caused.
For instance, we can set the damage caused by the spider to be 10 and the
damage caused by the shadow character to be 30 or whatever.

 1. Select the Hit state.
 a. Add a Set FSM Bool action.

 i. Game Object is Specify Game Object.
 A. Speci�ed as the target variable.
 ii. FSM Name is Health, be careful of the spelling and

capitalization.
 iii. Variable Name is gotHit, be careful of the spelling and

capitalization.
 iv. Set Value is checked and Every Frame is not.
 b. Add a Set FSM Int action.

 i. Game Object is Specify Game Object.
 A. Speci�ed as the target variable.
 ii. FSM Name is Health, be careful of the spelling and capitalization.
 iii. Variable Name is damage, be careful of the spelling and

capitalization.
 iv. Set Value is �10, or whatever value you would like to use.
 v. Every Frame is not checked.

Now, when the Jaws_Collider object hits Sancho during an attack by the
spider, Sancho’s health system will process through all of its states. The
process through the states of the health system begins by setting the
gotHit Boolean variable to true so that the systems know it has been hit.
We are specifying how much damage is being caused by the biting spider
during its attack, in this case 10 points of damage. Sancho’s health system
will determine if he is still alive or not leaving our spider to determine what
it must do next as well. We have now completed the essential construction
of our AI system for the spider threshold guardian character within our
game project.

195

Non-Player Characters

5.5.7 Final Tweaks

Our spider is now completed and connected with the Sancho health system
it is time to do some play testing. Some key things to look for as we test this
system are:

• Does Sancho respond properly to getting hit? (plays his self hit
animation)

• Does the spider close in and attack Sancho? (should have been tested
earlier, but double-check)

• Does Sancho die when he should? (if he has a starting health value of
20 and the spider causes 10 points of damage, then Sancho should
fall over dead after two hits)

• Does Sancho stay dead when he gets killed?
• Can Sancho run away from the spider?
• Can Sancho run away after the spider has attacked him once?

Hopefully, your system passed all of our current play test metrics that we
were looking at. If not, look back and double-check your state machines
paying special attention to variables used and the order that the actions
are placed within the states. PlayMaker executes the actions in order from
top to bottom, so if there is an action giving the state the option of �ring a
transition event before another action that never seems to be running it may
be caused by PlayMaker exiting that state, switch the order of those actions
and see if the problem is resolved.

During the play testing, you may have noticed a couple of other bugs that
cropped up. We essentially have two di�erent types of bugs that occur.
The��rst type is when the system does not behave as we wanted it to
which is always caused by a mistake on our part, either giving the system
a command that does not do what we think it does or using the wrong
variable or something. The other type of bug that can happen is when the
system does not do something that it probably should because we simply
did not even think about that while we were designing and implementing
everything. We currently have one of the latter types of bugs, but did you
notice it? The spider cannot attack Sancho while he is moving. So, how
could we �x this? Through some more play testing and �ddling with the
attackRange variable we can �nd a value that will allow the spider’s attack
to be triggered while Sancho is still moving with the potential of causing
damage, though as a rule it will not cause damage since Sancho is moving
when the attack is started and odds are when the Jaws_Collider gets to
where it is going Sancho will be gone. We could increase this range some
more, but as we do so, we should also consider sliding that Jaws_Collider
object out away from the mouth region to make sure that we can still trigger
a collision event with Sancho.

In play testing, our way through this one, a new bug popped up because
we had not considered it either. If the spider goes in to its Attack state while
Sancho is moving and Sancho stays within attackRange of the spider, it is

196

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

possible for the spider to be facing the opposite direction of Sancho and
every now and then making a random lunge into blank space. Not something
that we want, this can be adjusted by adding a Smooth Look At enemy object
within the Attack state of the controller state machine.

The final tweak that we are going to concern ourselves with, and there
are some others but we will leave those for you to play around with
and tweak as you see fit, is going to be the process of returning to its
patrolling. Currently, the spider will return to patrolling by going to the
next waypoint in its list of waypoints. But it is possible that in our mad
attempt to escape the crazed spider we have led it on a wild goose chase
all over the map until we ultimately lost, since we cannot fight back there
was a definite advantage for the spider. In order to do this we need to
utilize a global event transition, which was discussed earlier, and do some
searching in our array.

 1. Select the Patrolling state machine within the spider.
 a. Add a new event called Finished Attacking.

 i. After creating the event click the check box to the left of the
event name to make it a Global Event, see Figure 5.22.

 b. Create a new state and name it Find Closest Waypoint.
 i. Add a Global Transition to this state and select the Finished

Attacking event.
 ii. Add a FINISHED event and connect it to the Moving state, your

modi�ed state machine should resemble Figure 5.23.
 iii. Add a Find Closest action.
 A. With Tag is Spider Waypoint (will need to create this tag

and put all of the spider waypoints within it).
 B. Store Object is nextTarget.
 iv. Add an Array Contains action.
 A. Array is waypoints.
 B. Value is nextTarget.
 C. Index is index.
 v. Add an Int Add action.
 A. Int Variable is index.
 B. Add 1.
 2. Select the Controller state machine.
 a. Select the Patrol state.

 i. Immediately after the Enable FSM action add a Send Event
action.

 A. Event Target is Game Object FSM.
 B. FSM Name is Patrolling.
 C. Send Event is Finished Attacking.

We begin this process by creating that global transition event, which only
required clicking a check box to go from a regular transition to a global one.
In the new state that we added to the Patrolling state machine, we have
the system searching to �nd the nearest Spider Waypoint tagged item just

197

Non-Player Characters

as we had the Controller searching to �nd the nearest Player tagged item.
Now you can begin to see the power of organizing the objects that we
have in our scenes and tagging them as it abstracts out what we need the
actions to accomplish. Keep in mind that while we can hard code things, in
the end it is much better to use variables or other tools such that the values
are determined at runtime rather than at development time because things
may change. Hard coding refers to providing exact numbers and values for
things rather than variables, such as using a number of 2.5 (for instance)
as the maximum speed of the spider rather than the moveSpeed variable.
Hard-coded values are also more di�cult to modify as we need to �nd and
replace all the locations in which the hard-coded values were used. Always
try to avoid these hard-coded values whenever possible.

After searching for and �nding the closest Spider Waypoint type of object,
we are going to store that object within the nextTarget variable that the
Patrolling state machine uses to determine where it is going. The next action
is an interesting one, what we are doing here is �guring out which one of the
waypoints in our array of waypoints is the closest one that has been selected
as our next target. This is very important, because we need to know where
we are at within our array and therefore which waypoint will be the one that
we will be targeting after the spider has arrived at this closest one. The Array
Contains action is used to accomplish this task, speci�cally to �nd a speci�ed

198

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 5.22 Global event check box for events in PlayMaker.

FIG 5.23 Modi�ed version of the Patrolling state for the spider.

thing within the array, in this case the nextTarget Game Object. Remember,
arrays can store other variable types than just Game Objects, we just happen
to be using this one to store a Game Object. Once the action has found that
particular thing within the array it will store the index of that thing that it
found, the location of that thing within the array, in the speci�ed variable,
in this case the index variable. We end this state by adding one to that index
variable so that the index is pointing to the next waypoint in our array. If it
happens that the index is now out of bounds because of that addition that is
�ne because once the Moving state has completed and control goes back to
the Get Next Waypoint state it will pick up the Index Out of Bounds error and
kick control down to the Reset Counter state.

The last thing that is needed to get the system to utilize that new global
transition event we just added is to put a Send Event action into the Patrol
state of the Controller state machine. Make sure that this action occurs after
the Patrolling FSM is enabled; otherwise, the event we are trying to trigger
will be inside of a disabled FSM, which means that the triggered event will
not do anything. When sending events with this action, we need to specify
where we are sending the event to, the Event Target, as well as what type of
Event Target we are sending it to, in this case the FSM Name. By specifying
Game Object FSM as our Event Target, we are telling PlayMaker that we will
be sending an event to an FSM somewhere. In the GameObject section we
could have speci�ed another object, such as say the enemy variable that
we have. The FSM Name component then speci�es which FSM within the
GameObject target we are sending our event to and �nally which event we
want to send, the Send Event piece.

Playtest our �nal AI system for the spider and make sure that it is working
correctly, speci�cally get the spider to chase you to a far corner of your scene
and make sure that when you get away, or die if you prefer, that the spider
will return to patrolling by starting with the nearest waypoint instead of the
one it was heading toward when it got sidetracked by spotting Sancho.

5.6 Prefabs
Now that we have completed the basic construction of our Sancho Panza
character as well as some NPCs for him to interact with, we will create prefabs
from these assets. The ability to create prefabs is a very powerful feature
within Unity. A prefab is a Game Object that is essentially a holder for other
game objects and components. That is to say that we can create a prefab
of our Sancho character asset (or any of the others) that is currently in our
scene and all of the pieces that comprise and de�ne this asset will be stored
within the prefab, including any settings and tweaks that we may have
made to Inspector level variables. By creating these prefabs, we can add our
completed characters back into another scene without having to reconstruct
them as we did in this chapter. Any changes that we may make to the
characters later can be updated into the prefab as well so that the changes
will appear across all scenes using the character or we can keep the changes
to only the current scene.

199

Non-Player Characters

To create a prefab for Sancho, �nd the Prefabs folder in the Project pane. When
we open this folder, notice that there are already four prefabs in here, these
were created when we imported the Skeleton asset in the last chapter. Grab the
Sancho object in the Hierarchy panel and drag it down into the Prefabs folder
of the project pane. This has now created a Prefab object in the Project folder
that can be added to any other scene we like and when we add him we will get
all of the FSMs and settings that we have constructed thus far. Be sure to create
prefabs of other complex assets that we create. If we forget to create a prefab
of an asset, we can always reload the scene and create a prefab by dragging the
asset from the Hierarchy panel and into the Project panel.

5.7 Summary
In this chapter, we explored the basics of AI systems so that we are now
familiar with the broad concepts within this �eld. While as game developers,
we all have the goal of making more believable and engaging computer
characters to populate our virtual worlds, it is not quite as simple as toggling
some setting in our game engine from low intelligence to high. There is
a wealth of programming complexity to create rich behavior systems for
our characters and if we have that as a goal, then the AI system must be
developed early in the game cycle not late. We will need more time and more
testing the more complex our AI system becomes and as such we cannot wait
until all the rest of the game is completed then throw in a strong AI. If we were
to opt to wait until later in the development of the game, then we will have
to recognize that the decision-making systems we will have to use will not
be able to be as rich and deep as we may have envisioned in the beginning.
Another key factor to keep in mind is that elusive fun factor, if a more complex
intelligence system makes our games less fun to play then the complex
intelligence system has to go. We can create some very nice characters for our
games by combining our character knowledge from the previous chapter with
the information from this chapter and sculpt non-player characters with the
illusion of depth and complexity, even if their behaviors lack it. We have hit on
some pretty heavy programming and logic concepts in this chapter with the
arrays and the global events, be sure to practice with these some to make sure
you are comfortable before moving�on.

Download
You can �nd the �nished scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter5_part2.”

Vocabulary
Arti�cial intelligence
Expert systems
Evolutionary systems
Random behavior

200

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Scripted behavior
Mathematical behavior modeling
Abstraction
Comparison
Array
Data structure
Boundary condition
Hard coded

Review Quiz
 1. Why would a game developer opt for a scripted behavior AI system?
 2. What is one of the strengths of a mathematical model for an AI system?
 3. Why are evolutionary AI systems not used in too many games?
 4. What should the �nal factor be when selecting an AI system for your

game project?
 5. How can other state machines access an internal variable of a speci�ed

state machine?
 6. When using a Find Closest action what is the purpose of the object’s tag?
 7. When comparing two integer values, what would be the result of the

comparison is 15 less than 15?
 8. What can we do to make a Game Object invisible within a scene?
 9. What is the di�erence between a collider and a trigger?
 10. What does the index of an array do?
 11. What can be stored with array variable types?
 12. If a character is starting to �oat into the air when using a Move Toward

action, what might the problem be?

Exercises
 1. Implement an attack system for the Sancho character.
 a. This will require constructing a health system for the spider
 b. The �rst stage of the attack system is already in place. For the other

two stages you will need to:
 i. Add appropriate colliders to Sancho and give them Collision

Detection state machines.
 ii. Construct the health system for the spider so that it can be

damaged and killed.
 A. HINT: When it is killed it should not be able to patrol or

pursue or attack.
 2. Implement an Ally character archetype with the Arteria3D donkey that

we imported in an exercise from the previous chapter.
 a. In designing the Ally behavior consider the following:
 i. It should follow Sancho around the scene.
 ii. It should not stand on top of Sancho, so when it is close it should

do something else, consider the animation list of things that it
can do.

201

Non-Player Characters

 3. Using the extra animals we added to our project in the last chapter
(the�ones from the Medieval Farm Pack developed by Arteria3D), add
one�of these to your scene and construct an AI system for it (though do
not use the �u�y sheep as we will do something speci�c with that one in
a future chapter). Consider the following:

 a. What role should the animal serve in this project?
 i. This will be easier to answer after our next chapter on story, but

all of these pieces are intertwined and it never hurts us to think
ahead.

 b. What all can it do?
 c. Should it be attackable by the spider?
 d. Should it be attackable by Sancho?
 4. Construct a rudimentary AI system for the shadow character, the Sanson

character from Arteria3D imported in the last chapter.
 a. This will be very similar to the spider, in fact for the moment it will

be the same as the spider. There will be other states added once we
know more about the story in the next chapter.

Design Document
In this addition to the Sancho Panza design document, we have added the
logic for the threshold guardian as described in this chapter. We have also
added the essential logic for the shadow character as well.

Download
Updated version of the Sancho Panza design document can be downloaded
from the companion website: “DesignDocument_chapter5.docx.”

Consider your design document that you have been working on thus far and
add the following to it:

 1. Essential logic for the behavior of a threshold guardian, shadow, and ally.
 2. You may also want to begin considering the behavioral logic for other

characters that were added in the previous version of the design
document as this behavior may serve as a spring board for some story
and quest ideas coming up next.

202

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

CHAPTER 6

Story

Characters are a great place to start developing our game ideas. After
creating the characters, or even while creating them, we will often begin
developing some ideas for game mechanics. Game mechanics are what
the player can do, which we will be looking at in the chapter on game
mechanics, Chapter 8. For this chapter, however, we are not going to look
at what the player can do, but why the player is doing it or anything for that
matter. Story is the reason why things are happening within a game. Our
stories may be grand and epic sweeping tales spanning galaxies or they
may be straightforward tales. In either case, many of the core elements
of the story will be extremely similar. Our story can provide guidance
for the rest of the development of the game; that guidance will include
game mechanics as well as the design of the levels and environments for
the game. By the end of this chapter, we will have laid a solid foundation
for our Sancho Panza project by adding a story providing a reason for
the characters to be where they are, doing whatever it is that they will be

203

doing, as well as the essentials of what will occur during game play. This
foundation is ultimately what we will build our game on.

• What Is a Story?
• The Core Components of Stories
• The Greek Drama and Theater
• Monomyth and the Hero’s Journey
• Story as a Game and Level
• Backstory as Narration and Dialogue

6.1 What Is a Story?
When we hear the term “story” we bring in many of our own preconceptions
as to what a story is and what it is not. For our purposes we will go ahead
and de�ne a story as a relating of factual or imaginary events and characters.
We are going to leave our de�nition very streamlined, which will allow
it to be more �exible. For instance, we are going to exclude any ideas or
interpretations of entertainment. Many would de�ne a story as something
told or presented to an audience for the sole purpose of entertainment,
for example, a news announcement would not be considered to be a story.
While there is nothing wrong with that we want to keep our de�nition very
simple. Just because something is not necessarily entertaining, in whatever
way that may be de�ned, should not automatically preclude it from being
a story. While many stories may be entertaining, they can be used for other
purposes than to simply pass the time.

Humans have historically used stories for many purposes throughout our
history. We have stories to explain how we got here and why we are here.
We have stories to teach our children right and wrong. We have stories to
challenge our thinking of how society is and whether it should be the way
that it is. Stories can be related to an audience in many di�erent ways as well.
We can use the written word in books, relate a story orally as a storyteller,
or act out a story in a movie or play or through a video game character.
The story, for our purposes, will serve to provide the reason why the events
in the game have happened or are happening. However, a story does not
necessarily have to be the central component of a game.

6.2 Does My Game Need a Story?
The short answer to this, just as with characters, is “no, your game may
not need a story at all.” There are many games that do not need a story in
anyway whatsoever. Puzzle games, card games, casino games, even some
strategy games can be wonderful gaming experiences without any explicit
story content at all. The purpose of a story within a game is not to describe
the action of the game. Stories also do not describe the core mechanics of
a game. As an example, we can have an action-based game that focuses
on the core mechanics of jumping over rolling barrels or jumping over

204

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

alligator-infested pits, and the game can be tremendously fun without
having a story to the game. What the story provides, however, is the reason
why the character is trying to jump over those barrels to begin with, to save
his girlfriend at the top of the building from the monkey that kidnapped her.
We can simply place the goal at the top, in this case the girlfriend, and simply
tell the player your goal is to get the girl at the top. However, it will not be
long before players will want to know how she got up there. While it is not
necessary for us to develop and provide this story for the players, it does not
hurt us to do so either. In fact, through the development of a story for a game
we may, as was previously mentioned, uncover some new game mechanic
ideas that we can incorporate into the game.

Note
Even though we do not need stories within our games, people have a
tendency to desire stories, a tendency to want to know why something
is occurring. If we do not provide stories for our players, they will create
their own stories anyway.

6.3 How to Tell a Story
When telling a story it is generally a good idea to start at the beginning, so
to speak. A generic rule of thumb for structuring the retelling of a story is the
Hollywood 3-Act structure. Figure 6.1 provides a graphical representation
of this approach to storytelling. Within this approach to storytelling, the
story begins with Act I in which the characters are introduced and the
primary con�ict or problem that occurs within the story is introduced as well.
Following the introductions, the story progresses to Act II in which the hero
character faces a series of challenges with various degrees of success. The
challenges are intended to be leading the hero toward a �nal con�ict with
the antagonist of the story. Along with the challenges within Act II, the hero
will also meet the ally characters that will help throughout the story as well
as several of the guardians and other characters. Finally, the story concludes
with Act III in which the climactic con�ict occurs with the hero beating this
�nal challenge and being able to �nish the story.

205

Story

Characters and
con�ict intro duced

Confrontation and continuation
of trials for hero to overcome

Final con�ict
and resolution

Act IIIAct II

Hollywood 3-Act Structure

Act I

FIG 6.1 The Hollywood 3-Act story structure.

6.4 The Building Blocks of a Story
Creating stories is an artistic process. There is a tremendous amount of
creativity and �exibility inherent in the process of creating stories. Despite
this, though, each story is going to contain the same six core components
that it was built from. As discuss these building blocks and provide examples,
we need to keep in mind that becoming good at creating stories takes
practice. There is no magic formula that can be followed to guarantee a
successful and intriguing story. To be precise, despite the de�nitions of
building blocks and the theories discovered and presented by both Aristotle
and Joseph Campbell there is still no guarantee that a story we create will be
a good story (however that may be de�ned by other people or critics). But,
following these techniques may help to keep us on track as it is very easy to
get sidetracked while working on stories. With that introduction out of the
way, the six building blocks of a story are characters, setting, problem, plot,
solution, and theme.

6.4.1 Characters

The characters are the beings that inhabit the world of the story. More than
that, the characters are central to the story, essentially the story is about
things that happen to these characters. As we saw in the previous chapter,
there are several di�erent types of characters that ful�ll very distinct needs
within a story. At its core, a story really only needs to have one character, the
main character. We can have a story with just this one character in which they
are struggling to overcome something within the world or their environment,
such as the movie All Is Lost starring Robert Redford. However, as a general
rule, we tend to prefer stories with more than one character, we like to have
bad guys to dislike and look forward to their eventual downfall at the end of
the story. It is important that these characters be interesting and engaging
and that we take the time to develop them as thoroughly as we can,
especially the primary characters within the story.

6.4.2 Setting

The setting is the world in which the story takes place. In the context
of game development, the setting is the game world, or the virtual
environments that we allow the players to play the game within. As with
characters, the more detailed the setting is the more engaging the audience
will �nd the story to be (although there are some very obvious exceptions
within the games that we play). We have two things to consider when it
comes to the setting of our story:

 1. Does the setting adequately describe the world that the action will take
place within? For instance, if we were to say that we are making a space
game and that the player gets to have a spaceship that he can walk around
inside of and do stu�, what does the spaceship look like? Furthermore,
where can the player take the spaceship and what can they do there?

206

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 2. Does the setting match the characters and the story? The creation of
fantasy worlds is wonderfully fun; however, when doing so we must
maintain a consistency throughout the world and develop what
this world is and why it is the way that it is. An irony for us, as game
developers, as that it is very common that much of our work in story and
setting (as was also the case with characters) may not make it into the
�nal version of the game that we develop, but that does not mean that
we should not �gure some of these things out anyway.

We will be exploring setting in more depth and detail in our next chapter,
so we will hold o� on further discussion of constructing a setting for a game
until then, though we should consider that the setting and backstory of
our game world are very closely related partners. The backstory de�nes the
background of our world, how it got to the point that it is currently at. The
setting becomes the current representation of this backstory, for instance,
if our backstory involves a nuclear exchange between global superpowers,
then it would logically extend that our setting would incorporate nuclear
fallout zones and regions, the two are very closely related.

6.4.3 The Problem

Every story must have a problem or a challenge that is being faced by
the main character. A story where the character does not face any type of
challenge not only is boring but is also technically not even a story (based
upon the fact that a story should have these six core components). What
the con�ict is within a story can range from self-serving, such as to save
girlfriend from the top of a building, to explorations of social issues such as
the challenge presented to Scout’s father to defend an innocent man in a
deeply racist community. However, in either case that was just presented,
the challenge in and of itself is still simple and straightforward. We have a
tendency to try to overcomplicate challenges within stories that we create,
this is really not necessary. Keep the problem faced by the character simple.
We can introduce complexity within the plot, but the core problem faced
should be de�nable within a single sentence maybe two, if it takes more than
two sentences to de�ne the problem faced by the main character then that is
an indication that we still need to work on some details because we may not
be too clear about it ourselves just yet.

Another aspect of the primary con�ict within the story is that we can
have either internal or external con�ict within traditional stories. Internal
con�ict revolves around a hero character su�ering through some inner
emotional or mental turmoil and must overcome whatever this internal
barrier is in order to be successful in resolving the primary con�ict of the
story. The external con�ict occurs when the problem encountered by the
hero character is outside of the hero themselves, for instance, Darth Vader
provides an external source of con�ict for Luke Skywalker within Star Wars.
It is possible to mix these and provide both inner and external challenges
to the hero over the course of the story. For instance, Sauron presents an

207

Story

external con�ict to Frodo during The Lord of the Rings as Sauron attempts
to take the one ring from Frodo. However, throughout the story Frodo also
struggles with an internal con�ict as the ring continually tempts him with
power (Figure 6.2).

One of the simplest con�ict structures that can be created for use in
a story is a love triangle, as shown in Figure 6.3. While the traditional
version of a love triangle does involve a love interest, for example, two
suitors pursuing the same potential mate, however, this structure can
be extended beyond this traditional perspective to involve any one goal
being pursued by two di�erent characters. In order for the love triangle
system to work, the goal must be mutually exclusive, meaning that only
one of the characters can possess the goal (this is also referred to as a zero-
sum game within game theory). Using this as a framework, we could create
a con�ict within a story in which both the hero and the shadow want to
have control and authority over an island with a small village in it. Since
they both want to control the island, it follows that only one of them can
actually possess this goal, hence the primary con�ict that drives the story
between the two characters (we will use this as the primary con�ict within
our Sancho�Panza�story).

Note
A zero-sum game is any game or competition in which there can be only
one winner, whether a team or individual. Within a zero-sum game, there
must be a de�ned loser and a de�ned winner. Chess is an example of a
zero-sum game (except in the case of a stalemate).

208

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Fight

I need to
get in shape

FIG 6.2 Internal versus external con�ict within a story.

6.4.4 The Plot

The plot is where all of the action within a story takes place. Plot is not what
the story is about; rather, the plot is the retelling of the events that transpire
during the story. Another way to look at plot is attempts by the characters
to learn about the problem and to solve the problem that is central to the
story. As you can see, if there were no problem for the characters to work on,
then there would also be no plot or events taking place within the story. Plot
is where things get very interesting for us as game developers and we really
walk away from the academic realm of story and story development.

Within books and movies, the story writers have strict control over the �ow of
the action that is occurring within the story. However, within video games it
is the player that has control over the �ow of the action. That is to say that the
story is advanced through the actions of the player and in order to help the
player along, we as game developers may need to make sure that the player
does what we need them to do in order for the plot to be consistent. We will
discuss this more when we get to implementing our story within a game.

6.4.5 The Solution

All good stories must eventually come to an end and that is the solution. This
ending of a story is the solution to the problem that was presented within
the story. It is possible that the solution leads to a new problem, a sequel, but
the solution must be complete and resolve the currently presented problem.
With the solution to the problem now presented, the world should return to

209

Story

Love interest

Want

Conflict

AntagonistProtagonist

Want

FIG 6.3 Love triangle form of a story con�ict.

some level of balance or order that it had at the start of the story. Although,
it would be preferable for the world to actually have a new order or better
order than what it had at the beginning of the story. It is also important, as we
will discover when we look at Aristotle, that the solution to the problem, the
resolution of the challenge, provide the audience with a sense of ful�llment.
As storytellers, we want our audience leaving the story with a feeling of
completeness, a feeling that all ended just as it should. This, however, may be
trickier than it sounds.

6.4.6 The Theme

The theme of the story is what the story is about. All stories are ultimately
about something whether it be good versus evil, social injustice, or what
it means to be alive, the story is about something and is exploring that
something through the characters, challenges, events, and solution of the
story. Table 6.1 presents some common themes for stories, we as story writers
are de�nitely not limited to just these few themes, but there is something very
subtle and very important here. All stories throughout time have been about
these themes, our story may be a new story with unique characters involved
in di�erent events, but at its core, our story will still, most likely, be about one
of these common themes. And that is OK. New story writers get too caught
up with making sure that their story is new, that the story they are telling has
never been heard before. That is an admirable goal, but take a critical look

210

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 6.1 Some of the Common Themes of Stories

Theme Description Example Stories Example Games

Man versus
nature

Man’s attempt to survive within a world
that he or she cannot directly control.

2012
Jurassic Park

Half-Life

All things
change

Throughout life and experience, things
change, not necessarily better or worse;
they just change.

Where the Wild Things
Are
Bridge to Terabithia

Sims

Revenge The main character has been wronged in
some way and is out to get revenge,
sometimes even justice, though the two
can be mutually exclusive.

Carrie
The Lone Ranger

God of War

Man versus
society

Similar to the struggle against nature,
but this time the struggle is against the
�ow of a social structure surrounding
the main character.

The Lord of the Flies
Schindler’s List

Deus Ex

Overcoming
adversity

The main character must overcome
many obstacles just to have their life
return to some level of normalcy.

Slumdog Millionaire
Gone with the Wind

Heart of China

The power of
love

Despite everything that is happening, in
the end, love will conquer all things.

Snow White
Pretty Woman

Leisure Suit Larry

Good versus
evil

There are just bad people in the world
that want to do bad things and we must
overcome them.

Star Wars
The Lord of the Rings

Oblivion

at the books we read and the movies we watch. Take an objective look at
the games that we play. What are all of these about? Creating a new theme
for your story is not nearly as important as telling your story well. In�fact, we
would argue that some of the greatest stories revolve around these classic and
simple themes, but they are great not because of what the story is about per
se, but because of how the story is told. They are great because of the timeless
characters, the wonderful plot, and the nearly perfect solutions.

6.5 Aristotle and the Greeks
As game developers, we can easily gloss over the theory and principles of
theater and drama. However, as game developers we are actually creating the
next incarnation of theater and drama and as such we could do well to be at
least summarily familiar with the theories and principles of these �elds. While
it is true that not all games need stories or characters, if we are developing a
game that does involve characters and stories then it is all the more relevant
and important for us to consider some of what we now know about drama
and what we currently know about drama is largely drawn upon the work of
Aristotle and other Greeks.

Drama was to the Greek society what television and movies are to our society
in many ways. The Greeks produced many plays and of those many were
great and many were not so great. Just as we have many critics of our TV
shows and movies, the Greeks began developing a critical eye toward their
own writing and performances. The greatest of these critical evaluations was
a work called Poetics by Aristotle written sometime near the middle of the
fourth century BCE. Aristotle looked at several aspects of theater within this
work including characters. Aristotle focused on tragedy within this particular
work, his writings on comedy have been lost to time, for our purposes we
will de�ne tragedy as a story in which the hero falls or fails to accomplish a
great task set before them. We will add to this that a tragedy is also a serious
story and one dealing with some themes of moral right and wrong. With
these basic de�nitions in place we can begin to see the potential relevance
of Aristotle’s ideas being applied to the games that we may develop today.
Aristotle has developed a list of core components needed within a tragedy,
which have been highlighted in Table 6.2, and continues by ranking the

211

Story

TABLE 6.2 Aristotle’s Six Parts of Tragedy

Principle Description

Plot The arrangement of incidents and events within a story.

Character Agents that cause the events of the plot to occur and
advance the story.

Thought The reasoning and rationale behind the words and ideas.

Diction The expressing of words and ideas.

Melody Music performed by the chorus.

Spectacle Visual representation of stage and characters.

parts of a tragedy in order of signi�cance as plot, character, thought, diction,
melody, and spectacle. We will be taking a look at each of these in turn and
attempting to �nd an application to modern game development and design.

6.5.1 Plot

Aristotle considered the plot to be the single most important aspect of the
tragedy. As we saw earlier, the plot is the events that occur within a story
or tragedy. For Aristotle, however, he was mostly concerned with the Unity
of the plot, that is to say that one event necessarily follows from a previous
event. Plots should have a beginning, a middle, and �nally an ending, which
is also the same principle as the Hollywood 3-Act story structure that we saw
earlier. The events that occur within the plot should follow each other in a
reasonable, probable, and even necessary �ow of events. This is Aristotle’s
Unity of plot.

It is also important that the plot of a story be complete in and of itself. This
implies that the audience can enjoy the story without knowing anything
about the story beforehand. Consider an audience watching the �nal Lord
of the Rings movie without having any knowledge of the �rst two movies,
The Lord of the Rings is complete, but the individual components of it are not
complete in and of themselves. Our games should be complete when the
player gets to the end of the game. We can always make a sequel building on
the characters and events of the game, but we should not require our players
to play the second game in order to know how the story will end that we
have presented within the �rst game.

The concept of Unity within the plot also involves the idea that all actions
occurred as a result of elements within the plot. This is to say that any event
that occurs must be a result of some previous event that also occurred within
the plot. We should not have plot events in which there was no background
or reasoning behind the occurrence. While it is possible to have random
and disconnected events as components within a story, they should not be
the driving force of the story, rather the driving plot events should all be
connected within the current plot structure.

The beginning of the plot is simply the starting point of the story. It is not
necessary that the beginning is the result of any previous events primarily
because if those events are relevant to how the plot got to the point that it
is at, then those events are also relevant to the story at hand. However, the
beginning should still be a reasonable extension of the understood world.
Basically, the beginning of our stories should logically reside within the story
world that we have created, although the full and detailed description of
how the story world got to the point of the start of our story is not necessary
to be related to the audience. Even though we do not need to relate this
information to the audience, it is good information for us to have on hand
as it helps us to understand the world of our story and also provide material
that we can draw upon for story elements. This backstory of the world that
we have created can be dropped into our story at various places to not only

212

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

give the audience (player) tidbits of information, but also to give the story
a deeper sense of being real, of being lived within. The beginning of the
plot must be a chain of events in a cause-and-e�ect manner that gets the
ball of the plot rolling. For instance, when Luke’s uncle purchases the droids
from the Jawas at the start of A New Hope, the ball has begun rolling in a
cause-and-e�ect fashion of the plot leading to the next set of events that
necessarily follow; namely, Luke cleaning the droids and discovering the
recorded message. One thing leads to another in a fashion that is necessary
and consistent within the story, this is the �rst act within the Hollywood
3-Act�structure.

Following the beginning of the plot, the story would enter into the middle
stage. This stage is caused by the events from the beginning and it is in
this stage that the character is faced with challenges that culminate in a
climactic challenge to the character of the story. This stage of the tragedy is
the longest component of a story and is the second of the Hollywood 3-Act
structure. The plot events occurring during this stage should be escalating
in a logical and consistent fashion toward the climactic event of the story,
building tension within the story and the audience. This tension and
emotional investment of the audience is an important concept for Aristotle
as he felt that the tragedy must bring a well of emotions to the audience and
that we as storytellers must make the audience feel something.

This brings us to the �nal act, the resolution or end. It is here that the
con�ict originally presented by the plot and the driving force behind the
climax is resolved, one way or the other. Within the resolution, it is also
our responsibility to provide the audience with a catharsis, or a release of
the emotions and tensions that we have built within them. This is seeing
the good guy beat the bad guy at the end of the story. As an audience we
have gotten to where we really do not like the bad guy and we need to see
and experience the good guy winning in the end so that we can have a
release of these emotions. Figure 6.4 depicts this Aristotelian structure in a
Freytag�Triangle.

213

Story

������
������

�������
������

�� ����
������ ����������

���������

�� �����
�����	����
���� �����

�� ���
�� �� �����

����������	��������� �� �

FIG 6.4 Freytag Triangle demonstrating the pattern of Aristotle’s plot.

Within the con�nes of the plot, Aristotle considered there to be a need for plot
twists or redirections of the expected action. Aristotle presented two types of
potential plot twists: change or reversal of fortune and recognition. All�plots
have a change or reversal of fortune, in the simplest of plots this change
of fortune is when the bad guy loses in the end despite their expectation
to win. Speci�cally a reversal of fortune occurs when the events of the plot
switch such that the result of the event leads to the reverse of what the
character causing the event expected to happen. A simple example would
be a character pulling a trigger of an unloaded gun only to have it not shoot
any bullets. If the character had been relying on the gun’s ability to �re bullets
when the trigger was pulled, then the character has now su�ered a reversal
of fortune. More complex plots have a change of fortune and recognition,
or a change from innocence. This occurs when a character goes from not
knowing something to having knowledge. Depending on the knowledge that
is learned, the character will either have a very positive or negative emotional
response, either great love and happiness or great sorrow and despair.
This�knowledge discovery should go hand in hand with reversal of fortune.

Bringing this knowledge into the development of a game can be
accomplished through revealing information to the player at the same
time that the character �nds the information. This is a challenging task
to accomplish, as we will see in Sections 6.7 and 6.8 when we design and
implement some of our own story elements; however, we must remember
that the player is not only the audience of our story but also the lead
character, the hero. As a result we need the player to experience the story
as the hero, to experience the story through the eyes of the hero so that the
player’s thoughts may align with those of the hero. We need the player to
discover knowledge at the same time, or close to it, as the hero of the story
does. The player must experience the themes of the story through the eyes
and emotional construction of our hero character.

6.5.2 Characters

It is interesting to note that Aristotle placed plot as more signi�cant than
characters to the quality of a tragedy. We may be tempted to reverse that
and put the characters as the most important components; however, if we
consider, as Aristotle did, that the only role of the characters is to provide an
agent of action or a mechanism for advancing the plot then it would stand to
reason that the characters would have a secondary role in comparison to the
plot. The motivations and desires of the individual characters should in some
way be linked with the events of the plot but should not supersede the plot
and the �ow of the event within the plot.

Aristotle also believed that it was necessary for the hero character to have
some fatal �aw within their personality that would ultimately lead to their
downfall over the course of the tragedy. Whether characters in story-driven
games need fatal �aws or not is highly debatable, but the characters within
our games should be intricately linked with the plot events of the game. After
all, if the character serves no purpose within the game, then why should

214

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

we spend the time and resources developing the character for the game?
It is at this point that the intricate relationship between character and story
comes back to the forefront of our design process. If our game is not a story
intensive game, such as Sancho Panza, then we are able to shortcut some of
these ideas. However, if it is our goal to develop a deep and engaging story
for the players to participate in and explore, then the characters within that
story world will have to be the driving force behind the plot, speci�cally the
player’s character will have to be pushing the plot forward.

6.5.3 Thought

Thought refers to things that are a�ected as a result of the use of language.
Essentially, Aristotle is arguing that all the words spoken by a character within
a tragedy are the result of a thought process by the character. Characters
within dramas are not merely repeating written lines, they should be living
entities that are experiencing the story from their perspective and as a result
are having thought processes about everything that is occurring, at least
everything that they are aware of. As a storytelling tool, this becomes a
valuable mechanism to be used to help the audience know what a character
thinks or feels about certain events within the story. As a result of knowing
how those events have impacted the character, the character’s following
actions would �ow more necessarily from the events that have preceded.
It�is within this area that we can bring the theme of the story back into play
by revealing how the characters in the world feel and think about the theme
at hand. As the story progresses, character’s thoughts about the theme may
change and this we generally consider to be character growth.

6.5.4 Diction

Diction is the process of words being expressed within a tragedy. Keep in
mind that with Aristotle’s work he was looking at tragedy and also at epic
poems, so the signi�cance of words and how those words are expressed would
understandably be fairly important. Is the expression appropriate to the plot
and events that are occurring? Does the expression match with the character?
Aristotle’s focus here is how the words are used and making sure that the idea is
clearly expressed to the audience. Aristotle considered the metaphor to be one
of the more powerful mechanisms that could be employed because complex
ideas could be spoken in a manner that the audience would understand on
an intuitive level. It is a little di�cult to create a clear and direct relation with
Aristotle’s work and with game development on this particular topic. But, we
could consider the language that is used within our games and recognize that
if the words do not match with the plot it can be a jarring experience for the
audience or player. We can also recognize, from Aristotle on this point, that the
words we do utilize within the game, whether spoken in dialogue or read by
the player, should be consistent with the whole game experience and should
be precise at expressing the ideas that we are trying to get across. Whether this
component of tragedy is more important than the remaining ones, especially
within game development, is doubtful but it is still an important component
that we should consider during design and development.

215

Story

6.5.5 Melody

Like spectacle, as follows, Aristotle did not spend much time speci�cally
de�ning melody within tragedy. But it would stand to reason that he was
referring to the musical component of the tragedy. In Greek tragedy, it
was common for there to be a chorus, or what we would almost consider
to be a narrator, that provided comments and thoughts about the action
taking place on the stage, generally during some type of interlude between
scenes. Considering the role that the chorus played in providing narration
to the audience, even prepping the audience for an upcoming scene with
some question to consider, we can see the relationship to music and audio
as it is used in movies and games today. A dramatic musical score can prep
the audience for an event that is about to occur on stage. The same thing
within a video game, as the player nears a �nal battle with the level boss,
the music may step up a pace or two as a device to inform our players of
something about to occur. As a device used in this fashion, we can see how
melody is very important to engaging the audience with the events of the
plot by keeping the audience engaged and aware of those events. Likewise,
we should give serious consideration to the audio that we utilize within our
games, as we will see in a later chapter.

6.5.6 The Spectacle

In Aristotle’s thinking, the spectacle referred to visual appearance of the stage
and the actors. Aristotle does not speci�cally de�ne spectacle but we could
think of this as referring to the costumes and the props on the stage, though
Greek tragedy generally did not rely too heavily on these visual components
to begin with, which may be a reason that Aristotle ranked this as last.
However, as we shall shortly see, perhaps his ranking is more universal and
consistent than we may �rst think. For us, as game developers, we can think of
the spectacle as referring to the graphics that we have created and are using
within our game. Common thought has the graphics as the most important
component of a game. However, if we use Aristotle as a guide for developing
story and character-driven games, we will recognize that the graphics are
not as important as those other components are to the experience of the
story. Regardless of how amazing our graphics and visual e�ects are, if we
do not have the other components, then it is possible for our game to fall
short, especially if we have set out to develop a story-based game experience
which many modern games do. Consider the last few games that you have
played, what do you remember most? The amazing graphics or the story? It is
interesting to note how much time we, as gamers, spend complaining about
the story within a game. We may complain about graphical glitches, but we
rarely complain about the overall graphics of a game, we rarely complain
about the spectacle of the drama that we have participated in. If anything, we
will be upset about an ending that did not seem right to us, but will let the
graphics slide. Perhaps Aristotle was right in that the spectacle of the drama is
not as important as the rest of it and perhaps we as game developers should
seriously consider this as we work on our own projects.

216

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

6.6 The Return of Joseph Campbell
Joseph Campbell, as we learned in the previous chapter, spent his life
researching myths and legends around the world in order to determine
if there were any connecting threads between them. He had a Jungian
approach to the psychological aspect of his research drawing on Carl Jung’s
work with dreams and with the representation of characters within those
dreams. During this research, Joseph Campbell discovered a trend that kept
occurring among heroic legends and tales throughout the stories that we
tell regardless of our ethnic or cultural background. This similarity existed
regardless of time period of the stories as well. It appeared to be a universal
component of the stories that we tell. Joseph Campbell wrote of this in The
Hero with a Thousand Faces and referred to it as the “Journey of the Hero”
or sometimes called the “Cycle of the Hero.” Christopher Vogler also wrote
of this phenomenon and modi�ed it for use in screen writing, in which we
will �nd more immediately relevant to our work at hand as story writers
for video games, within The Writer’s Journey, in which we drew upon in
previous chapters for essential character archetypes. Figure 6.5 provides a
quick overview of the cycle of the hero in the form that Christopher Vogler
modi�ed from the work of Joseph Campbell. While Joseph Campbell’s work is
foundational to the theory of hero mythology, Christopher Vogler’s work will
be more immediately applicable to us as the process of creating stories for
games and writing screenplays for movies have a lot of similarities.

217

Story

Ordinary
world

Call to
adventure

Refusing
the call

Meeting
the mentor

Normal world

Extraordinary world

Reward

Ordeal

Approaching
the cave

Allies, tests,
and enemies

Crossing
threshold

Resurrection

The road
back

Return with
elixir

FIG 6.5 The journey of the hero as modi�ed by Christopher Vogler.

Before we break into discussions of each of the components of the hero’s
journey, we should recognize that this hero’s journey can easily be split
into a three-part structure, as shown in Figure 6.6, thereby falling into the
structure proposed by Aristotle and also the Hollywood 3-Act structure that
we have mentioned earlier. While it is not necessary to follow this as absolute
rules, they can provide us with a blueprint from which to direct our work
and a generic outline of how we may wish to proceed. This blueprint is not
intended to replace Aristotle or any of the building blocks of a story, rather,
the journey of the hero indicates which plot points occur at which point in
time, as we explore this in the following sections, we will see how each of
these plot events naturally occurs from the previous ones just as Aristotle
would have wanted and that there is Unity within the plot. It is not necessary
that these parts of the hero’s journey be followed in exact order, as some of
them can be reversed or even occur simultaneously, however some must
naturally �ow from predecessors.

Note
The journey of the hero is not a guaranteed blueprint to success, it is not
necessary to have all of the components or to even follow its structure
at all; however, for new story writers, it may serve as a starting point and
rough guide for further development of your own work.

218

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Ordinary
world Act IAct III

Act II

Call to
adventure

Refusing
the call

Meeting
the mentor

Reward

Ordeal

Approaching
the cave

Allies, tests,
and enemies

Crossing
threshold

Resurrection

The road
back

Return with
elixir

FIG 6.6 The journey of the hero split into a three-part structure.

6.6.1 The Ordinary World

The journey of the hero begins with the hero living their normal unassuming
life in the normal world. It is in this stage that the hero is introduced to the
audience, there may even be hints of the con�ict of the story, though the
focus at this point is the hero and their everyday life. Consider the Shire that
Frodo is living in as The Lord of the Rings opens. There is a birthday party
going on and life is continuing as it always has and, it is assumed by the
hero, as it always will. We can also consider the world at the beginning of
The Legend of Zelda: The Wind Waker in which our hero character is living his
normal life doing normal things unaware of the adventure that he is about to
begin. It is in this ordinary world that the story begins to attract the audience
by providing a hero and world in which the audience can appreciate,
associate with, and perhaps even long for.

This ordinary world also serves as a counterpart for the world encountered
throughout the rest of the journey. This can serve as a constant reminder of
what the hero is �ghting for and why they continue to struggle onward. Many
heroic journeys will lead the hero into an unknown world that will be quite
di�erent, if not completely opposite, from the world in which they began the
story. This is also the world that the hero hopes to one day return to after the
quest has been completed.

6.6.2 Call to Adventure

Life in the ordinary world cannot continue forever, otherwise there would
not be much of a story to tell, at least not one with any action to speak of.
At some point the everyday life of the hero will be interrupted by a call to
adventure. This may come in many forms, it may be a message in the mail,
the discovery of something within the attic, or even the villain themselves
may make an appearance of sorts marauding through the ordinary world
and upsetting all that the hero values. Many times this call to adventure
is delivered by the herald character as in Princess Leia’s call for help that
Luke had stumbled upon. This is the point in the story that everything
gets going and the tension begins building toward the inevitable final
conflict.

6.6.3 Refusal of the Call

The hero, out of humility or fear, will refuse the call to action. They will
provide excuses such as not being skilled enough, or being too small, or
having responsibilities that they cannot abandon. It is generally stressed
by the hero that they would go o� on this grand adventure, but for reasons
that they consider to be obvious they simply cannot and someone else
should go instead. This serves as an important point within the story as it is
a noti�cation to the audience that the actual adventure is about to begin,
that the ordinary world is about to be left behind as the hero enters into the
extraordinary. If the hero continues to refuse the call, something tragic will
happen that will force them to respond.

219

Story

6.6.4 Meeting the Mentor

The mentor character type, as mentioned in the last chapter, is here to
instruct the hero in all things heroic and get the hero going in the proper
direction. As a result, there must come a point in time when the hero meets
the mentor prior to the adventure getting fully underway. This meeting
may occur as part of the call to adventure or part of the hero’s refusal to
answer the call, but it must occur before the hero has crossed the threshold
into the unknown world. As the hero meets the mentor they will be given
what they need to get their adventure fully and truly started, but will still
have to discover and learn along the way. The character of Morpheus from
the movie The Matrix served as the mentor to Neo. Neo originally refused
the�call to action by stepping back into the building rather than climbing the
sca�olding outside, however later Neo would meet with Morpheus again and
at that point Morpheus gives a rough explanation and o�ers Neo the choice
between the blue and red pills after which Neo has crossed over into the
extraordinary world and the adventure is fully underway.

6.6.5 Crossing the Threshold

Once the hero has heard and responded to the call to adventure they must
make �nal preparations and cross this �rst threshold completely leaving
behind the ordinary world and entering into the unknown on the quest that
has been laid out before them. This is Neo awakening in the “real” world,
or Luke boarding the Millennium Falcon to depart from Tatooine, or Frodo
crossing the river and leaving behind the Shire and all that he has known.

Note
Notice the recurring mention of certain movies and stories in this
discussion. This is pointed out as these are considered to be great stories
by many people and yet these great stories so closely follow the model
of the hero’s journey, whether intentional or not. Consider the possibility
that stories structured along this blueprint, when well executed, may
touch a deep and unconscious nerve within the audience that resonates
within them and leaves a lasting impression.

6.6.6 Tests, Allies, and Enemies

The hero is fully engaged in their quest and adventure. During the course
of the adventure, the hero will face many tests and trials. The hero will be
successful at some of these and the hero will stumble and fail at others.
Generally speaking, the tests and trials become increasingly di�cult the
further the hero travels into the unknown world; we could even think of
this as levels becoming progressively more di�cult as the player advances
through the game toward the �nal boss. During this journey, the hero will
encounter enemies that will stand in the hero’s way of completing tests
and trials along the way. The hero must overcome these guardians in order

220

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

to continue their adventure. As well as the guardians, the hero will also
encounter the allies and tricksters during this stage of the story. This is the
time that Luke and Han spend on the Death Star during A New Hope, with
trials and tests gradually becoming more challenging to get through. Some
of the tests involved direct con�ict with guardians, whereas others involve
some puzzle to be solved such as the famous riddle of the Sphinx.

6.6.7 Approaching the Cave

This stage occurs after the hero has settled into this new world that they
now inhabit. The hero has grown accustomed to the trials and challenges
of this new world and is now ready to enter into the strongest point of the
extraordinary world. As the story approaches this central con�ict keep in
mind that we are not approaching the climax of the story itself just yet.
Rather, we are approaching a major tipping point in the life of the hero
character as the hero faces their most daunting task to date and may even
appear to die in the process. Many times this approach will be guarded by
entirely new guardians with completely di�erent challenges that must be
overcome by the hero, but by this point in time they are well prepared for
this moment even if very frightened to continue. The journey into the Mines
of Moria is the approach to this innermost cave for Frodo’s journey within
The Fellowship of the Ring. He has been well prepared and has come to an
understanding of exactly how dangerous this new world is in comparison
with the Shire. Although, there will be new guardians, a cave troll and a
balrog for instance, and much more di�cult tests to come, Frodo is ready to
enter into the cave and face this ordeal.

6.6.8 The Ordeal

Once the hero has entered into the cave, the central ordeal can begin. It is
during this test that the hero may appear to die or may actually die. Allies
may be lost during this con�ict. This is a very strong con�ict but it is not the
climax of the story. Rather, this con�ict serves as the tipping point of the
hero’s journey to give them the �nal resolve needed to face the climactic
con�ict. The hero will grow during this stage, moving beyond an egocentric
world view to one that is more altruistic in nature as the hero becomes more
concerned with the safety of the world than with their own safety.

6.6.9 The Reward

With the ordeal out of the way, the hero receives some award from this
extraordinary world, perhaps it is Princes Leia herself as Luke Skywalker is
able to escape from the Death Star with her following the ordeal in the trash
compactor in which he appeared to have died. The hero is also enjoying the
fact that they did not actually die during the ordeal and though everyone
knows that the ultimate evil of the story is still out there somewhere, for the
moment the hero is allowed to pause and rest. Take a moment to savor the
victory at hand.

221

Story

6.6.10 The Road Back

Upon successfully completing the ordeal and obtaining the reward, the hero
is given some type of option as far as staying in the world that they are in,
the extraordinary world, or returning back to the ordinary world, or at least
some close resemblance to it. This is the moment when Luke watches Obi-
Wan die at the hands of Darth Vader, Luke could stay in the extraordinary
world and �ght bravely, but Obi-Wan’s voice from the beyond urges Luke to
run and ultimately begin his journey back to the ordinary world. The hero
is still deep within the extraordinary world and as a result the journey back
may not be an easy one, though it should be easier than was the approach
to the cave earlier. Here the story is transitioning from the second act to the
�nal act. The story is picking up speed as it begins to rush the hero and their
allies toward the climactic con�ict of the story that we as an audience have
been waiting for.

6.6.11 Resurrection

This is the climactic con�ict within the story. This is where the hero will
face their most daunting task and one more challenge with death in order
to save the world. This is the moment of Luke hurtling along the trenches
of the Death Star, alone and the last chance for the rebels to destroy the
space station before the rebels themselves will be destroyed. It is in this �nal
con�ict that the hero must die to themselves in some way, they must be
resurrected into a new hero whether this is through the brave awareness that
Frodo must continue his journey alone to save others from the temptation of
the ring or Luke’s realization that he must use the Force and not rely on his
physical senses. As storytellers, we need for the audience to be aware of this
change in the hero, not because we have told them that it happened, but
because they see it happen within the character.

6.6.12 Return with Elixir

The hero has survived the ordeal and the resurrection; they are now ready to
return home with the ultimate reward. Perhaps this reward is a galaxy free of
planet-destroying space stations or it may be an individual with the ability
to be a savior for the mindless masses that are trapped within a computer
simulation of the twentieth century. At any rate, the hero now has something
of value to share with others within this ordinary world.

6.7 Story Design
With the building blocks and principles of story creation in place, we are
ready to step through the construction of a basic story for Sancho Panza
to explore. We will break this apart into chunks as we work through this
process. For new story creators, the process can seem a little daunting,
which is why we have selected to create a checklist of sorts, at least for
starting out. Keep in mind that this style of approach is not for the creative

222

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

process of the story but for the building blocks of the story. Once we have
all of the building blocks in place we can then relax and let the story go
where it will as long as it stays within the arti�cial con�nes that we have
built for it. This is an extremely formulaic approach to story creation, after
having created a few, this kind of approach can be modi�ed or dropped
to better �t your creative style. Remember, this is an introduction to these
topics and you are encouraged to expand your references and knowledge
as you see �t.

Note
Creating stories is an art form and like all other art forms it takes practice
to get better at it. The more stories that you create and write, the better
your story creation skills will become. This means that our �rst story
creation probably should not be the generation-spanning epic that we
have a couple of ideas for. Put that great idea on the shelf and practice
with some smaller ideas and return to the epic later. With completion
comes con�dence to create and complete many stories.

6.7.1 The Theme

What is this story about? This question is not the traditional question of who
is in the story and what happens to the characters of the story. This is the
purpose of the story, the theme of the story, the grand thing that we are
trying to say within our story. This is a stumbling block for many as we want
our story to be about something so much larger than we are; we want our
stories to be epic and eternal. That is all �ne and good, but we are making
video games, and at the end of the day, the video game must be fun to play;
the video game does not have to have a memorable and thought-provoking
theme to explore within the story.

While considering the theme of the story, we also want to consider the game
itself, at this point we are essentially asking “so, what is my game about?” We
should already have an idea of what our game is about as many times with
game development the whole process begins with “wouldn’t it be cool if…”
and it is that if that the game is about. Now the question is whether we can
turn what the game is about into what the story is about, or perhaps vice
versa if this all began with a story idea that we want to build a game around.
In our case we are making a straightforward platformer style of game with
some adventure elements to it. We would like to have some enemies for
our hero to �ght and then conclude with a boss battle. This example leaves
us with a question that we may not have considered before because it is
relevant to the story but not necessarily relevant to the game, why is the
player �ghting the boss? This leads us to the primary con�ict of the story, but
within the con�ict we can also �nd what the story is about. Considering the
sampling of themes that was proposed in Table 6.1, we have opted for the
classic good vs. evil for this story.

223

Story

Note
The story must be modi�ed to �t the game and always remember
fun and playability trump all other considerations when designing a
game. There are exceptions, but it is still a good rule of thumb to keep
in�mind.

This particular theme will not require much work on our part as far as translating
from the story to the game. Through a backstory revelation at the start of the
game, either with a voice-over narration or by means of some scrolling text,
we can let the player know that the bad guy is the bad guy and that Sancho is
the good guy as they battle each other for the little island that they are on. The
bad guy having evil plans for the island and its inhabitants, while Sancho wants
only good for his new subjects. Many story themes can be established in this
same style by telling the player up front what the primary con�ict of the game
is about. While the journey of the hero provides wonderful material for the
creation of compelling stories, for many games we will not need stories of that
level of complexity. Although, if you are planning on developing a sweeping
role-playing game or adventure style game, the journey of the hero will provide
you with plenty of guidance for further development of the game’s story.

6.7.2 Characters

Whether we begin this process with the story and then create the characters
or work in reverse is entirely arbitrary and dependent on your work�ow or
the sequence in which ideas occur to you. Inspiration is an elusive creature
to catch, so when it passes your way make sure to jot down whatever
fascinating thoughts occurred to you before they are forgotten. In our case,
we wanted to explore a game idea based on the character of Sancho Panza
from the classic of Spanish literature The Ingenious Gentleman Don Quixote of
La Mancha. This character was chosen as the hero primarily because he is in
many ways an antihero and could provide with some comical or at least light-
hearted game-play moments. For us, we wanted to steer away from a game
that takes itself seriously and thought that the characters would be a good
place to start with that approach. Another contributing factor was the knight
asset itself, when it was �rst discovered by us in Unity Creative Magazine, it
just looked like it wanted to be Sancho Panza someday.

The characters that we create need to match the story or the story needs to
match the characters that we have already created. For instance, based on
our work from the previous chapter, we already have a grouping of essential
characters, so now the story should be molded such that it �ts with these
characters we have in hand. To do this, we need to consider the abilities and
backgrounds of the characters that we created and recognize that certain
stories or settings just would not work very well. Dropping Sancho Panza into
World War II, as an example, would be an extremely forced setting and just
would not feel right. Having already created our characters, we can move on
to the next section.

224

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

6.7.3 Setting and Backstory

Where and when the story takes place is going to be absolutely vital when
we get to our next chapter on creating the virtual world for our game. As was
just mentioned, the setting should match with the characters. More than
that, we need to start considering some game-play-speci�c elements when
we consider the setting of the story. In the case of Sancho Panza’s setting, we
were able to draw from the original work by Cervantes for much inspiration.

It is at this point that we should mention Copyright law. Generally speaking,
you cannot use characters and stories created by other people within your
own work. The original creators own a copyright on the material that is also
known as intellectual property. This means that we could not create a game
with a mustached plumber named Mario as our lead character without
expecting Nintendo to contact us with some pretty nasty legal letters and
suits. Nintendo is not protecting their intellectual property because they are
jerks that cannot play well with others, they are doing it because the Mario
character was created by them and can only be used by them or those that
they license to use it. We would do the same with characters that we create.
Therefore, when creating your characters and stories make sure that you
are not using copyright material within your project as this will cause your
project to be put in storage at some point in time and will also damage your
reputation as a game developer. There are some legal defenses for using
copyright material such as noncommercial usage or satire.

Another aspect of copyright law is an area referred to as public domain. This
includes all material for which there is no copyright holder and included
within this category is all work that was published prior to 1923. What this
means for us as game developers is that all of those wonderful classics of
literature that were written prior to 1923 can be taken o� the shelf and
dropped straight into a game, provided that our version of the work is
actually based on the original publication and not some movie remake of it
that we recently watched at the theaters. However, it is not our intention to
provide an in-depth coverage of intellectual protection law and precedent;
we would encourage you to do some further research into these topics
before you decide to do any commercial work of your own.

Returning to the setting at hand. Throughout the story of the knight Don
Quixote, Sancho is promised an island of his own to rule once Don Quixote
has completed his tasks of knight errantry. At the completion of such tasks
it is customary, or so Don Quixote has read, for the knight to be awarded
with vast tracts of land and other worldly goods. Being a noble knight, or
a close approximation thereof, Don Quixote has promised to pass on to his
faithful squire Sancho an island to rule when the adventures are over. Of
course, this does not actually occur within the story, although the Duke and
Duchess characters within the story do put on a farce of making Sancho
governor of a nonexistent island that they have named Barataria and that is
where we come in. Using this as a basis for our creation we are going to drop
Sancho onto some island with a medieval town for him to be the fair and just
governor of. Unfortunately for him, there will also be some competition for

225

Story

this post of responsibility over the fair village of the island. As mentioned, the
village will be medieval with wood buildings and various animals roaming
the area. We will have the village abandoned of its inhabitants, chased away
by the villain of the story, though there will still be some farm animals that
have been left behind. As a side note on this, by having an empty village, it
will also cut down on character models and animations that we will need to
either �nd or create to add to the project; this will in turn simplify some of
our game development tasks. Our basic setting is now in place as we all have
various images of what such an environment might look like and in the next
chapter we will set about creating this environment through the use of assets
provided by Arteria3D.

For the backstory of this setting and plot, we have the content from the book
of Don Quixote to draw from as far as events that have led the world to being
in the condition that they are currently in. However, that information is not
necessary to be known in order to play our game and enjoy the story that we
have laid out. This backstory provides us with much that we can draw upon
as well as give us ideas that we can incorporate into our own product if we
want to. For instance, we could have a cameo appearance of the Duke and
Duchess, though not of Don Quixote himself as he is actually dead by this
point in time, unfortunately.

One �nal point before moving on, and we will cover this in more detail in
the next chapter, the setting must be one that is conducive for a video game
and also restraining for the player. By this, we mean that to create a setting
of an in�nite universe such as the galaxy of Star Wars is going to require a lot
of asset creation and also will need to allow the �exibility for the player to
literally go wherever they want to, though we could use the plot to steer the
player in the direction that we need them to go. In our case, we have selected
an island not only because it came from the original book, but also because it
creates an enclosed and complete environment for the game to take place in
with a natural boundary of water preventing the player from traveling away
from where the action is.

6.7.4 The Problem

We have already hinted at this fairly extensively in looking at the theme of
the story. The theme and the central con�ict tend to have a fair amount of
relationship with each other. In our speci�c situation, we have already stated
that the theme of the story is good vs. evil so the central con�ict of the story
is one between the hero, Sancho, and the villain, Sanson (introduced in our
design document from the end of the previous chapter), both desiring the
same thing. This is the basic lover’s triangle that we discussed earlier and
modi�ed for our needs as seen in Figure 6.7. Both characters are �ghting
for control of the island named Barataria and only one of them can actually
control the island and its inhabitants, which are just a bunch of farm animals
that have been left behind. Ultimately the central con�ict of a story should
be one that we can express in one or two sentences; if it is more complex
than that, then we are incorporating many di�erent con�icts and events and

226

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

getting them all confused. The central con�ict is only the one thing that the
hero and shadow are ultimately at odds about, all of the other challenges
throughout the story are building to the �nal con�ict, but are not actually
part of the con�ict itself, just events that naturally lead to that �nal con�ict.
Remember Aristotle, all events should naturally follow from each other and
our plot should include all of the necessary events of the story.

6.7.5 The Plot

The plot of a story within a game is going to vary based upon the type of
game that is being developed. A story-centric game will have an engaging
plot with plot twists throughout the experience for the player, such as
encountered in many of the older point and click adventure games such
as King’s Quest or even within the Myst series of games. For action style
games such as Super Mario World or our Sancho Panza project, we are not
engaging in a complex story line, for us the plot will be straightforward,
what Aristotle would have referred to as a simple plot as we will not
even use any plot twist devices during this story, there is simply no need
for them. This is reinforcing the idea that we have stressed throughout
this chapter, deep engaging story lines within a game are wonderful,
however always keep the needs of the game, both fun and playability, at
the forefront of your design. Creating revolutionary game-play systems
to implement stories in di�erent ways than has previously been done is a
noble goal and one to de�nitely pursue, however probably not as your �rst
game project in an introductory book.

227

Story

WantWant

Conflict

Barataria

SansonSancho

FIG 6.7 The lover’s triangle as modi�ed for our need within this story.

6.7.6 The Solution

With video games, it is very di�cult for us to get the cathartic experience
that Aristotle deemed so important for the solution of the con�ict. Although,
we do end up with a cathartic experience as game players having overcome
the �nal challenge of the game. We can allow these to be one in the same for
our purposes, which means that the solution to our con�ict must present the
player with a suitable challenge such that they have an emotionally releasing
experience from �nally beating it and winning the game. This is not to say
that we should abandon all hope of having a cathartic experience from the
story itself, but always remember that the playability of the game trumps all
other issues, unless we are going out of our way to explore di�erent ideals of
game experiences as some games are beginning to do now. For our case, we
will rely on a su�ciently challenging �nal battle with Sanson, once the player
has gotten through the challenges and trials that will lead to that con�ict.
It will be an action game sequence similar to the boss battles at the end of
games such as Sonic the Hedgehog. The full design of this battle will fall into
Chapter 8 coming up shortly, for now it is su�cient for us to know that the
resolution of the con�ict will come from a direct confrontation between the
hero and the villain and that the hero will win, though in the case of the game
it may take the player a few tries to get the hero through this �nal con�ict.

6.7.7 Dialogue

This is a special category of story design that only needs to be considered
when creating video games. During the development of a play, novel, or
movie, we have complete control over the dialogue and it is exactly as we
have written it; this means that we would essentially write the dialogue the
same way that we would any other parts of the story. However, within video
game development, dialogue is oftentimes something that the player gets
to participate in providing the player with the illusion that they are in some
way altering the progression of the story. Generally speaking, they are not
really changing the story, it is more like the old Choose Your Own Adventure
book series; the player is only picking one of the prewritten story lines to
follow.

When designing the dialogue for our game, we need to consider the
following needs:

• The dialogue should be relevant in some way to the story.
• The dialogue needs to provide information to the player.
• The player should have options to select their response during the

dialogue.
• The dialogue must be designed such that the player will get needed

information.

Making the dialogue relevant to the story means that the player does not
engage in random small talk with various non-player characters (NPC) over
the course of the game. As game players, we immediately think that this

228

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

would be a wonderfully cool thing to do as it would make the world more
immersive and more real and just generally better. While it does have that
potential, consider the possibility of the player of an adventure game in
which they need to talk to a speci�c NPC in order to learn the combination
for a locker somewhere. But, in this game we have made it so that the player
can actually talk to all of the NPCs and have irrelevant conversations about
things that have nothing to do with the story or the quest at hand. This in
turn makes it very di�cult for the player to �nd the key character that they
need to talk too and as a result the player gets stuck not knowing what to do
next. We could alleviate this by placing a special icon over the one character
that needs to be talked to, but in so doing we have just lost that sense of
immersion that we were after because now the player can just look at their
map and go straight to the key conversation bypassing all of the others that
are there. As a result, it will be easier for us as designers and easier for our
players if we just focus on creating dialogues relevant to the game and any
of the irrelevant small talk type things we just relegate to one-o� comments
rather than lengthy dialogues. Besides, how much fun would it be to talk to
the 30th NPC about the weather and the taxes in the town?

Note
Everything that is placed in a game requires art assets, programming,
design, and work. Always focus on the required key components of a
game to make sure it is playable.

We can create our dialogues as complete scripted events that the player
can watch and listen to as they unfold; we usually refer to these as cut
scenes. While these are very useful, they are not interactive; the player is
watching a movie unfold and has no impact on what happens. To alleviate
this, many dialogues within games will allow the player to respond to
what the other characters have said. We can present the player with a
couple of di�erent options in this response system. The �rst is to display
to the player exactly what their character would say and let the player
select the option that they prefer. The other option is to present the player
with a mood response and let the player select how their character will
respond but not exactly what words they will say. There are advantages
and disadvantages with both of these. In the �rst case, the player will know
exactly what their character will say, but this may lead to a wall of text
options that the player has to read before making a selection. The second
case will present the player with less to read when making a selection,
but oftentimes the player’s idea of an angry response and the developer’s
idea of an angry response may not exactly match leading the player to
wish they had selected something else because that was not what they
wanted�to say.

When we create dialogue trees, we need to make sure that there are no
dead branches in the tree. By this, we mean that if the player needs to get a

229

Story

combination from the character in this conversation, then regardless of how
they navigate through the dialogue, they end up with the combination. It is
tempting to punish the player for being mean or whatever, however, if the
player cannot get the information that they need, then they are stuck in the
game and cannot continue. This was a problem that plagued many of the
early text and point and click style adventure games in which a player might
have to completely restart because they missed something along the way.
That can be a very frustrating game-play experience, though we as designers
should be willing to push the envelope by introducing consequences for
player action. These are all things to consider and to practice as we continue
to sharpen our game development skills. Figure 6.8 depicts a small dialogue
tree for this simple combination example that we have been discussing.
In this example, we are going to provide the player with both complete
sentence responses and action responses to select from. This particular
example will involve an interaction between the player character and a
hobo-type character in a subway somewhere. We have kept this example
intentionally short.

As can be seen in the example dialogue tree, we have made sure that the
player is going to get the information regardless of how they navigate

230

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Hey there, need something, buddy?

Get away, you stink.

Threaten
Pull gun

Give boozeBribe

Hmmm, don’t know
anything about that.

Oh, that combination...
Yeah. OK its 3-5-6.

Very nice.
The combo is 3-5-6.

Heh, I heard you might
be tryin’ to get into a
certain locker somewhere.
I might could help out.

Lookin’ for a combo, you know it?

FIG 6.8 Example dialogue tree for getting a combination from a character.

through the conversation. We do not want the player to get stuck in our
game because they are opting to play it di�erently than we think that
they�should. The key to this, though, is to try to maintain some sense of
continuity throughout the conversation. For example, while the player
can get the conversation by being angry with the NPC, the NPC gives the
information reluctantly and if we were to introduce a relationship monitor
system to the game, the player may have their relationship with this speci�c
NPC negatively impacted by this exchange.

There are several tools that can be used for designing and testing your
dialogues. While Microsoft O�ce (or other o�ce compatible application) can
be used, it can be di�cult to scroll through various screen and pages to track
your dialogue. Because of this, we recommend using Chat Mapper, which
is a free-to-use application that is excellent for developing and testing your
dialogue trees.

6.8 Putting the Story into the Game

Download
You can �nd the starting scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter6_part1.”

We have already discussed that many of the story elements will be put
into the game as we continue working on developing the project. For
instance, the setting will be put in as we construct the virtual world and
the levels. The solution will be put in place with the final boss battle.
The plot events will be put in place through levels or challenges that
we present the player with, perhaps rescue a chicken from a marauding
spider, for instance. But there are other pieces such as the backstory
of the conflict and even plot events to an extent that do not naturally
lend themselves to a section of a video game. For these, we are going
to have to be deliberate about how we approach these and in so doing
we will encounter some aspects of video games that we have already
experienced.

The primary consideration that we have to make is how are we going to
get information to the player. Story information is given to the audience in
other media through action on the stage or through words written in the
book. The audience is directly given the information, and we will adopt this
same approach and make sure that our players know the answers to the key
questions of who, what, why, where, when, and how by telling them what
they will need to know during the course of the game, which brings us to
how we will tell them. We essentially have three techniques that we can
leverage: voice-over narration, written text on the screen, or dialogue with
other characters. We will look at each of these in turn and develop a brief
example for each.

231

Story

Note
The following sections are not intended to replace the chapters covering
audio and the user interface (UI). As a result, we will not be going into
great detail about the features of the audio system or the new UI system
within Unity, saving such discussion for the relevant chapters. Here,
we will get to the nuts and bolts of what we need to know in order
to get our immediate task accomplished. After learning about the UI
system and audio system, these topics will be revisited and the initial
implementation presented here will be expanded and corrected.

Before going into our examples, however, we will create a new scene so that
we are only testing out these new features and not worried about all of the
characters that we constructed in the previous chapters. Select File � Save
As to save our current scene as a di�erent scene, in our case we have named
this new scene “Chapter 6 Testing” and saved it within the Scenes folder of
our project. Next, we will go ahead and remove all of the things that we really
do not need for our current purposes. Speci�cally, we will remove all the
characters except for Sancho and his wife Teresa, the waypoints used by the
Spider, and the blocks that we had originally placed in this scene. Now, we
are ready to try out some new things within this scene.

6.8.1 Voice-Over Narration

For our opening of the �rst level of the game, we are going to use a voice-over
narration in order to set the stage with the relevant backstory information. We
are not going to tell the player everything at once, just the basic pieces that
they need to get the game going. In order to do this, we will have to consider
our backstory and determine what the player needs to know to begin the
game. There are two di�erent directions that we can go with this, option
one is that the player does not need to know anything they can just play and
option two is going to be to provide them with some background.

Note
It is important to not tell the player everything in one go as this can
be information overload and lead to the player not remembering
everything. Instead, give the player the information that they absolutely
must have, with a little �avor on the side, and add more story details and
information as the game progresses.

With option one, this really depends on the game that you are designing.
For instance as a platformer and action–adventure style game, it is quite
plausible for the player to just start the game and begin playing. Many
platformer games do not actually have much of a story or at least not one
that extends to a huge backstory. Our game is on the light-hearted side
of the action–adventure genre, meaning that we are leaning more toward
platformer with just a little bit of the other thrown in. As a result, we could

232

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

easily get away without providing any backstory information to the player;
however, we are opting to not run the game quite that lean, but would rather
throw in some of the action–adventure genre by providing our platformer
with a bit of a backstory to get the player up and going and also to help set
the stage and theme for the player, which brings us to option two.

For the voice-over narration, we are going to add an audio �le to the project
and then get it to play within the game. For a full discussion of the options and
features of the audio system for our basic game take a look at Chapter 9. At the
moment, all we need to know is that in order to play an audio �le we will need
an audio source component added to an object and in order to hear the audio
that is being played within the game we will need an audio listener component
added to some object. Generally speaking, the audio listener is added to the
main camera or player character as it is where the player hears the audio from,
so it would make sense for our player’s ears to be located where the player�is.
The audio source, on the other hand, can be added to whatever we want
playing the audio (more on the relationship between listeners and sources later).

We have already laid out our basic backstory earlier, so all we need to do is
to voice act that backstory and record it. For the audio recordings that we
will need to create, we are going to utilize the free program Audacity (a more
detailed discussion of it is found in Chapter 9). There are other tools out there
that can be used, however Audacity is free, easy to use, and very powerful. The
audio �le that we are going to use can be found on the companion website.

Download
You can download the required backstory audio �le from this chapter’s
section of the resources on the companion website: “intro_narration_
backstory.mp3.”

 1. Create a new folder within the Project panel to store audio �les; we
will call this folder Audio.

 2. Import the mp3 audio �le by dragging it into this newly created folder.
 3. Create a new empty GameObject.
 a. Change its name to Narrator or something along those lines.
 b. Make the Narrator object a child of the player (Sancho).
 c. Change the position of the Narrator to 0, 0, 0.

 4. Add an Audio Source component to the Narrator.
 a. Figure 6.9 depicts the default properties of the audio source

component; notice the Play On Awake feature; this means that the
audio source will automatically play something when it is created
(when it wakes up).

 b. Add the intro_narration_backstory audio �le to the AudioClip
property within the Audio Source component, check Figure 6.10.

We now have an object that will serve to play any narration audio �les that we
may�use during the game. It was not necessary to create a separate object as we

233

Story

did, but you can see how this is abstracting out the uses of the objects such�that
this particular object we will use only for narration. By adding the object to
Sancho, it will follow him around wherever he goes and whenever we have some-
thing that needs to trigger a narration, we can simply utilize this Narrator object
and tell it what audio �le to play. We will specify the audio �le inside of PlayMaker
at a later time once we have moved out of our testing scene and have more game
pieces in place. For the moment, however, this will do as a testing run and we will
tweak this�when we start putting more of the game together, speci�cally once we
get some interesting things and areas within our game world setup.

Note
We can assign audio �les to our audio components by either dragging
them to the AudioClip property of the Audio Component or we can
assign it at runtime within PlayMaker. At the moment assigning in the
Audio Component does what we need to do.

234

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.9 The default settings for the Audio Source component.

6.8.2 Written Text

Written text can serve several purposes that we need to consider during the
design component of our game projects in which we will look at in more
detail in Chapter 10. As we design our games, we need to consider the user
interface and how we will provide information to the player, written text is one
of those options. During the design stage, however, we are not going to think
of everything, but as the game is developed and play testing begins to occur
we will discover issues within the game that we had not considered. A potential
solution for some of these issues is the use of written text or even voice-over
narration. An example of a common problem that will pop up during testing
is the player not knowing what to do next, as developers we are so close to
the project that we forget what we have told the player and what we have not.
We know so many things about the game that the player does not and tend
to assume that the player has the same knowledge that we do, they usually do

235

Story

FIG 6.10 Adding the correct AudioClip to the Audio Source Component.

not though. So, when we start getting complaints about not knowing where
to go or what to do, a quick �x is to throw in some written text somewhere and
that problem is now solved. Knowing that this is a potential problem we will
go ahead and solve it now by giving the player their �rst “quest” of our game
(though it will not be complete, yet, we will �nish it up later).

The GUI (Graphical User Interface) system of Unity has been completely reworked
in version 4.6 and this new system has continued into version 5 of Unity. The
basic idea of the interface is that all UI elements are drawn onto a Canvas object.
So, in order to get any UI elements into our testing scene we will need to add a
Canvas to it and add the basic elements that we will use. For the moment, what
we are going to build is a starter noti�cation that will tell the player that they
must go �nd Sancho’s donkey, Dapple. We are not adding any testing to see if
they have completed the quest or not, just a simple noti�cation to get them o�
and going. If the player clicks on the message then the message will disappear.

 1. Create a cube object.
 a. Name it Sample Text.
 b. Place it somewhere in front of Sancho in our test scene.

 2. Create a Canvas Game Object and make it a child of the Sample Text
object we just made, Game Object � UI � Canvas.

 a. Change the Render Mode of the Canvas to “World Space” (check
Figure 6.11).

 b. Adjust the Width and Height in the Rect Transform section of the
Canvas (Figure 6.11).

 i. We are going to use values of 5 and 2, more on these values in
a later chapter.

 c. Move the Canvas next to the Sample Text object; notice that it is
still quite large.

 i. Now we will scale this canvas and reposition it until we have
something that we like (Figure 6.12).

 A. For positioning we have used the di�erent angles to get
the Canvas positioned roughly above the empty object.

 d. With the Canvas in place, we will now add a button to it. Right-
click on the Canvas and select UI � Button.

 i. For this example, we are going to leave the Panel with its
default settings.

 ii. There is a Text object that is a child of the button, select that
object.

 A. Enter our text message as shown in Figure 6.13.
 iii. At the bottom of the Inspector for the Button is a section for

specifying what to do when the button is clicked (Figure 6.14).
 A. Drag the Sample Text object to the �eld currently labeled

None.
 B. Select No Function and switch that to GameObject �

SetActive.
 C. Make sure the check box is left o�.

236

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

After playing our adjusted level, we can see that we have a nice little text
message displaying in the game world for the player to see. Yes, we have
done some new things in this step; however, we want to keep this chapter
focused on story concepts and save the detailed discussion of these UI
components and how they work for Chapter 10. This is now providing the
player with valuable information that they may need for playing the game;
more speci�cally, the information is �lling in some story components
for the player. In this case, we are telling the player what they need to
accomplish, which is to say that we are telling the player what the next
plot point is within the story. Until that plot point has been accomplished
the story will not move forward to the next stage. This is giving the player
the illusion of controlling the �ow of the story, but in actuality this is a very
linear approach.

237

Story

FIG 6.11 The properties of the Canvas object, the rotation may not be necessary on yours.

Note
Creating nonlinear story lines for games is not quite as trivial as making
a design decision that our game will not be linear. There is a movement
within the industry to create more content that gives the player more
creativity and �exibility within the story structure that has been created.

We may have a couple of very minor issues at this point: does the player know
that they have a donkey? If we included the information in our backstory
narration, which we did, then the player should know that their donkey is
named Dapple. However, it may be that the player skipped over the starting
narration or did not listen to it (which brings us back to the possibility of
adding in subtitles). We will address the possibility that the player does not
know who Dapple is in our next section.

6.8.3 Character Dialogue

Earlier in this chapter, we discussed the di�culties that must be considered
when creating a dialogue for the game project. For our Sancho project, we
are going to create and implement a starter conversation to be placed at
the beginning of the game between Sancho and his wife Teresa. It is not
necessary for us to construct a huge dialogue tree in order to demonstrate
the principles at work here, so we will keep our tree relatively short as can be
seen in Figure 6.15. The �rst thing we need to determine is what information

238

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.12 Position of the Canvas object above the cube that was added to the scene.

we are trying to get to the player. In this case, we want to tie the backstory
narration into the game so that this �rst conversation is going to serve the
purpose of letting the player know what they need to do and why they
need to do it. We can view this conversation as bridging a gap between the
backstory narration and the little written text box that we created in our
previous example. We will use a combination of complete responses and
actions as we did in the combination locker example earlier.

Now that we have the basic outline of the dialogue in place, we can go ahead
and implement this within our game. Looking at the dialogue tree that is
presented, we can see the PlayMaker state machine emerging from the diagram
and ready to be dropped into the project. This will be a fairly straightforward
process building upon the written text example that we just completed and
the previous work that we have done with �nite state machines (FSM) within
PlayMaker. A basic guideline is that we are going to present the user with a
written text screen as we did previously then the buttons displayed will be

239

Story

FIG 6.13 The properties of the Text object child of the Button.

the options that the player can select from to continue the dialogue. Before
we implement the full dialogue for this encounter, however, we will ned to
implement the system so that it will recognize when the dialogue should start
and get it ready to �re up; Figure 6.16 depicts an overview of this state machine.

 1. Select the Teresa character so we can get her con�gured to trigger
our conversation.

 a. Add a box collider to Teresa.
 b. Adjust the settings of the collider so that the box is nicely around

her, not too tight because we will need them to be triggers that
respond to Sancho getting close to her; our settings can be seen
in Figure 6.17.

 c. Add an FSM to Teresa called Starting Dialogue (we will construct
this later).

 i. Disable this FSM in the Inspector for Teresa.

240

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.14 The On Click() properties for the button on the Canvas.

241

Story

Tr igger enter

FINISHED

FINISHED

Idle

Kill dialogue system
Return player control

Turn to face each other
Stop player controls
Start dialogue

FIG 6.16 The dialogue detection and �ring system.

Sancho, there you are.
I’ve been looking for you.

I’ve been looking for you, too.Who are you?

You oaf, I’m your wife, Teresa.
Now be serious we have things to do.

Dapple?
This place is a mess.
We need to get all the
animals back in their pens.
We should start by finding Dapple.

Quit being silly, Sancho.
Your donkey, Dapple.
Go find him.

End.

OK

OK

OK

Dapple?

Not looking too hard.
Anyway, we need to get
this place cleaned up.
Before we can get the
animals in their pens
we need to find Dapple.

Like what?

FIG 6.15 Dialogue between Sancho and Teresa.

 d. Add another FSM to Teresa (this will start the conversation
system, call this FSM Dialogue Detection this FSM should match
Figure 6.18).

 i. Add a state named Idle.
 A. Create a new event named Start.
 B. Add Start event and connect to Begin.
 C. Add a Trigger Event action.
 I. On Trigger Enter.
 II. Collider Tag = Player.
 III. Send Event = Start.

 ii. Add a state named Begin.
 A. Add a FINISHED event and connect to Close state.
 B. Create two Game Object variables that are visible in the

Inspector, one for Sancho and the other for Teresa. In the
Inspector, drag the appropriate Game Object into those
variables. See Figure 6.19.

 C. Create a Bool variable named isOver with a default value
of false.

242

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.17 Collider settings for Teresa.

 D. Add two Smooth Look At actions.
 I. The �rst one has Teresa look at Sancho.
 II. The second one has Sancho look at Teresa.
 III. Figure 6.20 depicts these settings and use Inspector

variables to store the Sancho and Teresa objects as
needed.

 E. Add Enable FSM actions to disable all of Sancho’s
controller FSMs as seen in Figure 6.21.

 F. Add a Play Animation action.
 I. Use Specify Game Object and set that to the Sancho

variable.
 II. Select the Idle animation from the drop-down list.

 G. Add a Bool Test action.
 I. Test every frame for True and if it is True do the

FINISHED event.
 H. Add an enable FSM action to turn on the Starting Dialogue

FSM.
 I. Leave the Reset on Exit box checked to turn this o�

when we leave here.
 iii. Add a state name Close.
 A. Add a FINISHED event and connect to Idle state.
 B. Add Bool Flip action and set the variable to isOver, this will

�ip the value of the variable.

We now have the basic detection system in place to determine if Sancho has
entered into the area to start the conversation and if so to go ahead and get
everything ready for the conversation to take place. In order to test this, we will
need to set our isOver Bool to be an Inspector variable so that we can change
its value while the game is running. Go ahead and run the game. Try�moving
Sancho toward Teresa and notice how Sancho stops moving, and�Teresa turns
to face him. In fact, Sancho also turns to face her. Sancho also quit running and
goes into his Idle animation. Now click Teresa in the Hierarchy so that we can
see her properties in the Inspector and go ahead and switch that Bool variable
to True (see Figure 6.22). Now Sancho can run away from the conversation; also
notice that the variable immediately went back to False, which is the Close state
doing its thing. We can now run away from Teresa and if we come back to her

243

Story

FIG 6.18 The basic structure of the dialogue detection FSM.

it will all start back up again. With the detection system in place we are now
ready to construct the dialogue system itself.

We will begin the construction of the Starting Dialogue FSM by �rst building
the written text box that we will utilize for the dialogue text and Sancho’s
responses. This time we will add some new details to the text system that
we previously created such that it will roughly match the diagram depicted
in Figure 6.23. In order to do this, we will need a Canvas object that we will
attach to Teresa. And attached to the Canvas we will need two Button objects
for when Sancho has two options to select from, a Text object for Teresa’s
words, and a Text object along the top for her name.

 1. Create a Canvas object and attach it to Teresa and adjust its size and
position as we did earlier.

 a. Add a Text object and attach it to the Canvas.
 i. Change the name of this object to be Speaker.
 ii. Rather than changing the Height and Width of the Speaker

object, use the Scale tool (Figure 6.24) to resize the text box to
be visible and �t within the Canvas.

 iii. For the Text, change it to Teresa and change the color as well;
we have gone with a reddish type of color.

244

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.19 Assignment of the Sancho and Teresa Game Object variables.

 b. Add another Text object and attach it to the Canvas.
 i. Name this one Dialogue.
 ii. Position it such that it �ts into the remainder of the Canvas area;

for testing purposes, we entered the longest text that Teresa will
speak from Figure 6.15 to make sure that things line up. It may be
necessary to rework the Canvas and the Speaking text as well,
and remember to save room for two possible options for Sancho.
Figure 6.25 shows our �nal version including the buttons.

 iii. While this can be a tricky process, we can use the Horizontal
Over�ow and Vertical Over�ow options set to Wrap and
Over�ow to have text wrap vertically and horizontally better
(see Figure 6.26).

 c. Add a Button object to the Canvas.
 i. Rename to Option_1.
 ii. Position and scale as needed using Sancho’s line of “I’ve been

looking for you, too.” for testing.
 d. Add a �nal Button object to the Canvas.

 i. Rename to Option_2.
 ii. Position and scale as needed using Sancho’s line of “Who are

you?” for testing.

245

Story

FIG 6.20 The Smooth Look At actions with the Begin state.

With the basic dialogue box in place, it is now time to construct the Starting
Dialogue FSM such that it can display the correct words for Teresa with the current
response options for Sancho. Along with the display, our Starting Dialogue FSM
must also properly respond to the button clicks from the player and update the
dialogue to match that which has been designed and diagrammed earlier in
this section. However, as of the writing of this book, the uGUI (Unity GUI system
we have been using) action support is not included as a part of the standard
PlayMaker package. This means that we will need to add some new actions to
our default PlayMaker action set by utilizing the Ecosystem package browser we
installed back in Chapter 3 when we were looking at both Unity and PlayMaker.

Note
Before installing new actions, always check to see if the needed action is
already in your PlayMaker install. You can do this by typing the name (or
part of the name) of the action that you are looking for in the search bar
of the Action Browser in PlayMaker. In this case try searching for uGUI to
see if any of the actions are included before assuming that they are not.

246

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.21 Disabling all of Sancho’s player controller FSMs.

247

Story

FIG 6.22 The isOver variable that needs to be switched during testing.

Player’s response 2

Player’s response 1

Speaker’s words and
responses

Speaker’s name

FIG 6.23 Basic outline of the elements and components within the text system.

FIG 6.24 The Scale tool is the currently selected box in the image.

248

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.25 Final version of the Canvas with the Text and Buttons in place.

FIG 6.26 The over�ow settings for the text in uGUI.

 1. Get back into the Ecosystem browser.
 a. PlayMaker (top of the Unity toolbar) � Addons � Ecosystem.
 b. Select “Use the ecosystem!” (if necessary).

 2. Search for the uGUI button actions we need by entering
“uGUI�button” in the search box and clicking Search button
(See�Figure 6.27).

 a. There should only be one result “uGUI button on click.”
 b. Select that result and click Get.
 c. After it has downloaded and added the action to your Unity

package, you will have an orange label at the bottom letting
you know that the PlayMaker system is being recompiled to
incorporate this new action (also depicted in Figure 6.27).

 3. Close Ecosystem.

The action that we just added is going to allow PlayMaker FSMs to respond
to button clicks being generated by buttons within the new UI system. In
our earlier example with the written text, we kept things out of PlayMaker
and handled responses directly within Unity; however, in our conversation
version, we will have to utilize PlayMaker to update the text that is being

249

Story

FIG 6.27 The Ecosystem browser with uGUI button search results and Unity compiling.

displayed in both the text areas and the buttons; this will require the FSM
being able to respond to button clicks through this newly added action.
This ability to expand PlayMaker with custom actions allows the system to
be continually growing and evolving as Unity does so as well.

We are now, �nally, ready to implement within the Starting Dialogue FSM
all of our needed transitions and states as we have already de�ned in the
design of this conversation. Table 6.3 presents the variables that we are
going to need for this as well as the custom events that we will create. With
those variables and events in place we are ready to put this FSM together
using actions that we already know as well as the new action that we just
added. Figure 6.28 depicts all of these variables and the values that have
been assigned to them. To make sure that the system works as we want
it to, we are going to go ahead and turn o� the Canvas and the Starting
Dialogue FSM so that they both get turned back on and are functional by
the FSM within PlayMaker. To do this click the check box next to Play Maker
FSM (Script) Starting Dialogue. For the Canvas, however, we do not want to
disable the Game Object itself, but the Canvas component that is within the
Canvas object (see Figure 6.29).

250

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 6.3 Custom Events and Variables for the Starting Dialogue FSM

Name Settings

button_1 GameObject variable with inspector checked.
Drag the Option_1 button into this variable in the Inspector.

button_1_text Object � Unity Engine � UI � Text variable.
Check the Inspector box.
Drag the Text object from Option_1 into this variable in the Inspector.

button_2 GameObject variable with inspector checked.
Drag the Option_2 button into this variable in the Inspector.

button_2_text Object � Unity Engine � UI � Text variable.
Check the Inspector box.
Drag the Text object from Option_2 into this variable in the Inspector.

dialogue_text Object � Unity Engine � UI � Text variable.
Check the Inspector box.
Drag the Dialogue Object from the Canvas into this variable in the
Inspector.

Journal Object � Canvas variable.
Check the Inspector box.
Drag the Canvas object from Teresa into this variable in the Inspector.

speaker_name Object � Unity Engine � UI � Text variable.
Check the Inspector box.
Drag the Speaker Object from the Canvas into the variable in the Inspector.

onClick_1 Event.
Used for when the player clicks button_1.

onClick_2 Event.
Used for when the player clicks button_2.

Video
We have provided a video detailing the initial con�guration and setup for
this state machine. There are a bunch of variables that need to be created
and this video may help to clarify any issues with the process. The video
“Starting Dialogue Variables” may be found in this chapter’s section of
the videos on the companion website.

 1. Begin by laying out the states and transitions to roughly match that
from the design sketch of the conversation. We have named each
state with the �rst couple of words Teresa will say to help identify the
states; Figure 6.30 shows this �nal layout.

 2. Select the Start state.
 a. Add a “U Gui Button On Click Event” action to this state.

 i. Set Game Object to use the button_1 variable that we just
created by selecting Specify Game Object and then switching
to variable.

 ii. Send Event should be onClick_1.

251

Story

FIG 6.28 The Inspector variables and assignments for Teresa’s dialogue system.

 b. Repeat for the second button.
 c. Add a Set Property action.

 i. Target Object is Journal.
 ii. Property is enabled.
 iii. Set Value is checked.
 d. Add a Set Property action.

 i. Target Object is speaker_name.
 ii. Property is text � string.
 iii. Set Value is “Teresa.”
 e. Add a Set Property action.

 i. Target Object is dialogue_text.
 ii. Property is Text � string.
 iii. Set Value is “Sancho, there you are. I’ve been looking for you.”

252

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 6.29 The Canvas component to deactivate.

 f. Add a Set Property action.
 i. Target Object is button_1_text.
 ii. Property is text � string.
 iii. Set Value is “Who are you?”
 g. Add a Set Property action.

 i. Target Object is button_2_text.
 ii. Property is text � string.
 iii. Set Value is “I’ve been looking for you too.”
 3. Select the “You oaf” state.
 a. Add a Set Property action.

 i. Target Object is dialogue_text.
 ii. Property is text � string.
 iii. Set Value is “You oaf. I’m your wife, Teresa. Now be serious we

have things to do.”
 b. Add a Set Property action.

 i. Target Object is button_1_text.
 ii. Property is text � string.
 iii. Set Value is “Like what?”

253

Story

FIG 6.30 Final outline of the Starting Dialogue FSM.

 c. Add an Activate Game Object action.
 i. Game Object is Specify Game Object and select button_2

from the variable list.
 ii. Activate should be unchecked.
 iii. Reset on Exit should be checked.
 d. Add a “U Gui Button On Click Event” action to this state.

 i. Set Game Object to use the button_1 variable.
 ii. Send Event should be onClick_1.
 4. Repeat this process for the other states of the conversation changing

text and setting active as needed (this is an exercise at the end of the
chapter).

 5. Select the “End” state.
 a. Add a Set FSM Bool action.

 i. Set FSM Name to be Dialogue Detection.
 ii. Set Variable name to be isOver.
 iii. Set Value should be checked.
 b. Add a Set Property action.

 i. Target Object should be Journal.
 ii. Property should be enabled.
 iii. Set Value should not be checked.

Video
The steps for this interactive conversation may have been somewhat
confusing in the text version; take a look at those same steps in our video
available at the companion website: “Starting Dialogue.”

We now have a fully functional conversation system in which it begins when the
player gets close enough to trigger it and then responds to the player’s choice of
words for Sancho. There are still some things that we would like to correct within
it, speci�cally some of the visual layout of the text, but for a quick dive into the
uGUI system we have learned a tremendous amount. We will return to this
dialogue system in Chapter 10 when we learn more about the GUI system and
at that point will pretty it up. It would also be nice to add some voice acting to
the characters so that Teresa’s words could be voiced by someone and Sancho’s
words could be voiced in return, this is something that we could easily add in
once we know how to get audio playing with PlayMaker. We are going to make
one �nal tweak before leaving this chapter, though, and that will be to convert
our written text example from earlier into a journal instead.

Notice that in this state machine we have made extensive use of variables.
While we could have done direct property setting by dragging the Game
Object from the Hierarchy and releasing it into our PlayMaker Action panel,
that approach would have created a headache when moving this Teresa
object to another scene as a Prefab. Any value setting that we had done
through this approach would have been lost in the transition to another

254

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

scene, however, but using variables as we are doing all we will need to do in
our game world scene will be to reassign what those variables are through
the Inspector panel, which will be pretty easy to do and then the state
machine we have constructed for this dialogue will work just �ne with the
new dialogue system we create later.

We have also introduced a new action in the Activate Game Object action. The
Set Property action that we used for all of the values we changed during the
course of the dialogue can only be used on variables of type Object; this means
that we cannot use that action to enable or disable a Game Object itself, only
a part of a Game Object. We already have a Game Object variable for our two
buttons to use with the U GUI On Button Click Event action so it makes more
sense for us to utilize those variable references to the Game Objects to turn
buttons on or o� as we may need. For instance, if Sancho only has one available
response in a conversation moment, he does not need to have both buttons on
the screen at that time. The Set Property action is a very powerful action as we
can use it to reach into any object and set values for that object.

6.8.4 Journal Systems

Journal systems really are nothing more than glori�ed written text systems.
Their primary purpose is to remind the player of the tasks that they need to
complete and quite possibly why the task needs to be completed. For our
basic example project we will only remind the player of the task at hand,
speci�cally “Find Dapple.”

 1. Attach the Journal to Sancho.
 2. Turn o� the Box Collider and Mesh Renderer components for the

Journal.
 3. Using the Game View move the Journal so that the text is behind and

below Sancho (or some place that you �nd pleasing).
 4. Disable the Journal object within the Inspector so that it is not visible

anymore.
 5. Select the Teresa object.
 a. Enter the Starting Dialogue FSM.

 i. Select the End state.
 A. Add a Set Property action.
 I. Target Object is Journal.
 II. Property is enabled.
 III. Set Value is checked.

Now we have a journal that updates with the appropriate information after
the conversation has ended. We can do some testing of things, such as not
allowing a conversation to occur if the player currently has a quest or at least
not allowing the conversation to complete, but that kind of stu� we will hold
o� on implementing at the moment. Once again, we can pretty things up
as we learn more about the uGUI system within Unity and the tools that we
have available to us.

255

Story

6.9 Summary
In this chapter, we looked at the principles and theories behind story
creation to provide us with a foundational set of building blocks that we
can utilize when constructing stories of our own. While it is not necessary
that we follow any of these rules, it is necessary for us to know what the
rules are before we start breaking any of them. Too often we try to blaze
our own trail and while this is a very good thing for us to do, we need to
make sure that we have an understanding of the current trails, where they
go, and why they are there before launching o� into our own. We have also
looked into a quick example of using those building blocks to construct
the core components of the story for our Sancho Panza project. While
we can still add some pieces and �avor to the basic story here and there,
the essential story is now in place for our game and we are beginning to
develop a good understanding of who is in the game, why they are in
the game, what will happen during the game, and what the game will be
about. These are important questions for us to get nailed down before
we start making a game. We need to know where the game is going as
that will guide us and provide a stabilizing force during the rest of the
game development process when we will sometimes feel overwhelmed
and completely lost. Adding more of the story elements and components
to our game will be much easier as we learn more about both Unity and
PlayMaker, but our journey is well underway at the moment and we are
now ready to construct a world for our story to take place within.

Download
You can �nd the �nished scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter6_part2.”

Vocabulary
Story
Hollywood 3-Act structure
Poetics
Setting
Problem or primary con�ict
Internal con�ict
External con�ict
Love triangle
Zero-sum game
Plot
Solution
Theme
Thought (Aristotle on tragedy)
Diction (Aristotle on tragedy)

256

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Melody (Aristotle on tragedy)
Spectacle (Aristotle on tragedy)
Journey of the hero
Ordinary world
Call to adventure
Refusal of the call
Meeting the mentor
Crossing the threshold
Test, allies, and enemies
Approaching the cave
Ordeal
Reward
Road back
Resurrection
Return with the elixir
Audio source
Audio listener

Review Quiz
 1. What are the individual components of the Hollywood 3-Act structure,

and how are they derived from Aristotle’s work in Poetics?
 2. How does the journey of the hero �t into the Hollywood 3-Act

structure?
 3. What is an example of an application that could be used to design

dialogues for video games?
 4. What is an example of an application that could be used to create and

edit audio �les?
 5. Which Unity component must be added to a game object in order for

that object to play audio �les?
 6. Which Unity component must be added to a game object in order for the

player to hear audio �les?

Exercises
 1. Consider a favorite movie or book of yours and apply the hero’s journey

to it. Does it have all of the components of the journey?
 2. Complete the conversation between Sancho and Teresa from the chapter

example.

Design Document
In this addition to the Sancho Panza design document, we have added the
essential components of the story for the game, including a back story. We
have also developed some basic plot lines to follow that can be incorporated
into the levels of the game or may be utilized as small side quests.

257

Story

Download
Updated version of the Sancho Panza design document can be
downloaded from the companion website: “DesignDocument_chapter6.”

Consider your design document that you have been working on thus far and
add the following to it:

 1. For essential story components, consider the following points:
 a. What is the theme of your story? Remember it does not have to be an

epic story or even a complex one.
 b. Will you incorporate plot twists into your work?
 c. What is the backstory of your world and characters?
 i. How much of this will the player need to be aware of?
 ii. How will this be communicated to the player?
 2. What quests or level challenges will you incorporate to work with your

story and to advance it?
 a. How will this information be given to the player?
 i. If using voice-over, what will be said?
 ii. If using character dialogues, what will be said?

258

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

CHAPTER 7

Environment

The creation of virtual environments and game worlds is a topic that by
itself could easily fill a book. Our goal in this chapter is not for the reader
to emerge on the other side knowing every detail about this fascinating
subject. Rather, our aim is for the reader to have a solid foundation of the
tools and techniques used within Unity to create game worlds. With this
solid foundation in place, we will be prepared to expand our knowledge
into more intricate environments, especially through a more detailed
exploration of lighting. When creating a game world, it is important to
keep in mind the needs of the story and the needs of the game; the two
must merge in this area even more so than in the previous topics. The
game world becomes the visual representation of the story’s environment
and setting as well as the�location in which the player experiences the
game that has been created for them.

• Environments for Stories
• Environments for Games
• Unity’s Terrain Tool

259

• Unity Trees and Water
• Placing Imported Assets
• Lighting with Unity

7.1 Environments for Stories
In the last chapter, we saw that stories have settings, the locations, and times
that stories take place within. We can alter this vocabulary from setting
to environment without changing the meaning or usage of either word.
Therefore, the use of environments for stories is that they ful�ll the role of
the setting for the story. These settings are important, as we saw in the last
chapter, but before we write this section o� as a summary of the last chapter,
we need to reiterate a key concept. If we do not know the setting of the story,
then we do not know the environment of the story and therefore we do not
know the environment of the game that we are about to develop. While
many games do not need stories or characters, many games do and if you are
developing a game that does utilize characters then you will need a story of
some type no matter how rudimentary or complex it is. It is important that
we take our time when developing the components of our story, while we
should leave some �exibility within for growth and exploration in certain
areas that we discover during the development process, we need to have
these basic building blocks pretty solidly nailed down and understood.
When we start talking to an environment artist to build some virtual worlds
or concepts for our story we need to know a little more than “it is on some
medieval type island.” For instance, with our Sancho story our environment is
a little more �eshed out with some room for interpretation as can be seen in
the design document from the end of the last chapter.

Stories need environments that will allow the characters to do whatever
it is that the story will require of them while also allowing for interesting
interactions and challenges to appear within the plot. The environment of
a story should also provide access to the primary con�ict that drives the
plot of the story. The readers and viewers of a story will experience many
nuances of the story through the environments that are selected as a part
of the story. An example is the starting planet of Tatooine in A New Hope.
This desolate starting location helps the viewer to, like Luke, want to travel
to some other places; it also helps to de�ne the characters that we were
introduced to within the spaceport where Luke met Han Solo. Imagine the
same scene taking place in an upscale 5-star resort on a vacation planet with
tropical breezes blowing through the open windows and little umbrellas
in everyone’s drink. The image (the environment) does not match that of
the characters and the events occurring which creates a jarring experience.
Therefore, when working on the environments of the stories, we need
to objectively look at the events that will occur, the primary con�ict, and
the characters that will be involved. Most stories have many di�erent
environments for di�erent scenes or chapters within the story.

260

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Note
It is very possible to create jarring environments that do not match
characters and events for the purpose of comedy or some social
statement that is trying to be made within the story. Be careful of always
following the blueprints of story creation, this is a creative process and
while these guidelines are a good start be willing to break the rules, but
only after you know the rules.

7.2 Environments for Games
With the environment created for the story such that we can easily (within
reason) tell the story with our desired plot events, we are ready to move on
to converting that environment for a video game. Video games are similar
to movies in many ways, speci�cally they are both visual and tell stories to
an audience through a limited screen perspective. By this we mean that the
audience of a movie (or game) can only see what the camera allows them to
see whereas the reader of the book does not have a visual representation of
the setting, but a mental and imaginary view of it. Games, however, di�er
from movies in that the player is oftentimes allowed to manipulate the view
of the world by moving the avatar and therefore the camera. Unlike movies,
where the audience is stationary and we take the audience where we want
them to be and show them what we want them to see, in video games, the
audience (the player) take themselves where they want to be and see what
they want to see. As we saw in the previous section, the environment gives
the audience a lot of hints as to the events and characters within a current
scene. The environment also sets the mood to heighten any emotional
content that we might be trying to deliver to the audience. Therefore when
designing environments for video games we need to keep the following
concepts in mind:

• What can the player do?
• What should the player not do?
• What does the player need to know?
• What does the player already know?
• What challenges (plot events) are being presented within this level (scene

or chapter)?

7.2.1 Controlling the Player

Addressing the �rst two questions of our list essentially comes down to
controlling the player. The �rst aspect of controlling the player is allowing
them to do whatever it is that they should be able to do. For instance, in
the construction of our Sancho Panza control system we have given the
player the ability to make Sancho jump; therefore, our environment may
have platforms at di�erent heights to allow the player to do these things
that they can do. On the other hand, just because a character (or player)

261

Environment

can do something does not mean that we have to make it a relevant part
of the game. For instance, we can create the environment of Barataria
without any raised platforms, so that even though Sancho can jump, it is
not a relevant aspect of the game-play experience, it is just a little extra
something that the player can do. To further illustrate this, consider the
�rst-person shooter games where it is possible to draw and holster your
weapon. This speci�c action is not necessarily relevant to game play
because pressing the �re button automatically draws the weapon and
�res it; it is just an action that the player can do and an action that many
of us do select many times as we run around the worlds during the game
because we think it looks cool or is fun.

We can now see that the actions that the player’s character is capable
of performing must play a rule in the design of our game environments:
running, jumping, crawling, crouching, hiding, and so on. At first glance
this may seem an obvious statement to make, specifically in regards
to running or walking, but consider the difference in views between
walking and crouching. These differences we will have to take into
account as we design the level because we will need to make sure that
the art assets will�work at both levels; we will also need to make sure
that our collisions will work at both levels. We have all played games
with “map holes,” spaces�in the game world where we can slip through
to a different spot or drop down to a different level than the rest of the
game. These types of things are going to happen with development
(we would all like to ship a game with no bugs at all, but some always
seem to creep�in); however, we can try to limit these mistakes as much as
possible. A further example would be if the character can swing a sword,
if so we need to make sure�that our environments and rooms will be
large enough to allow this action to occur without the sword seeming to
rip through walls and mountains.

Beyond the needs of the character’s interaction with the world, we need to
consider the plot needs of the current level that the player is playing within.
By this we mean that the story may require that the hero character �nd all
of the sheep that have wandered o� and return them to their pen before
continuing on. Our level design must allow for this to happen in such a
way that is fun and engaging (very elusive ideas to begin with). We need
to create an environment that presents challenges to the player but also
allows the player to do what they need to do. In allowing the player to �nd
the sheep, it may be necessary to close o� other parts of the environment
to make sure that the player does not wander too far away or get o� on
some sidetrack and be unable to complete the task at hand. The sheep that
they are after should be accessible, that means that there should not be
anything the player can do or go to that will prevent them from being able
to complete the current challenge. Another way that we see this story need
controlling the environment is within boss battles. Generally speaking,
once the player triggers the boss battle portion of the level they cannot run
away or skip past it, they must �ght the boss and win in order for the story
to progress.

262

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

There are many ways that we control where the player can and cannot go
within an environment. We can use hidden barriers or walls, those are the
times when you are running around in a world and suddenly you just cannot
go any further. There is no obvious reason why you cannot go any further
except that the level designers do not want you too. This is a very useful
technique, though we could enhance it some by making those areas hazy
or fuzzy so that the player might understand that they will be going there
later, just not yet. These are arti�cial boundaries and some of our games will
require such devices to keep the player where we want them to be.

Natural boundaries, on the other hand, are geographic aspects of the natural
environment that prevent a player from going in a certain direction. These
can include mountains, oceans, rivers, lakes, canyons, and so on. These are
very powerful approaches to keeping the player where we want them to be;
however, there are two catches with using this technique. The �rst is that we
will have to build that type of content or we will have to make sure that our
story supports such content. For instance, the isle of Barataria very nicely
supports the idea of using an ocean to keep the player from leaving the area
that we want them to be. The second consideration with this technique is to
make sure that the geography is very heavily play tested. Many players will
consider a mountain range to be a challenge and will do everything they can
to get past it somehow. This may lead to very unexpected and unfortunate
results if we have not programmed in a possible method of cleaning things
up in case the player does �nd a way to the top of the mountains and jumps
o� of our game world.

The �nal technique that we can use to control the player’s location and
actions is essentially a combination of the two. We can have doors, gates,
fences, and other props within the game world that will become unlocked or
open once the player has completed the task in the given area; for instance,
after the player �nds all of the lost sheep, a door will become unlocked that
will allow them to leave the town pasture and continue to the next challenge.
Keep in mind that the point of levels is to present the player with challenges.
It is tempting for us as designers to consider ourselves to be in competition
with the player as it is our job to kill the player as many times as we possibly
can. But the reality is that we need to consider ourselves as partners with the
player. We are working together to tell a story. As developers we have laid
down the framework of the story, but the details and nail biting action will
be written by the players themselves. Does the hero beat the boss with just
a sliver of health left barely surviving the challenge or does the hero come in
and absolutely dominate the villain beating them into submission?

7.2.2 Informing the Player

Now that we understand that we will have to control where the player goes
and what they can do, we need to recognize that we will have to in some
way get this information to the player. For instance, if the player is looking
for sheep and trying to return them, we need that information relayed to the
player through the environment. Now, there are many ways that we can let

263

Environment

the player know what challenges they face, some of which we looked at in
the last chapter. We can also utilize a mini-map with icons for quest objects
or superimpose arrows on the screen to tell the player which way they should
go, both of which would truly fall into the category of user interface design
rather than environment design. However, our environments can still provide
the player with clues; for instance, there could be footsteps indicating which
way the sheep have gone. There could also be an empty pen with its gate
open and a sign with a sheep on it to indicate that there should be sheep
inside of this pen but for some reason they are not there.

Aside from utilizing the level to help the player with quest-type items, we can
also use lighting, simple particle systems, audio, and basic animation to draw
the player’s attention to components within a level. For instance, we could
have a small glittering particle system �oating above some gate to indicate
that the player could interact with the gate in some way. With an interior
environment, we can utilize the lighting to help steer the player in a speci�c
direction, making areas of the environment that are not important darker
to keep the player from wasting time in those sections, even though many
players will anyway.

Another classic example is having an item that can be picked up or
collected rotating to draw the player’s attention to it and help the player
to di�erentiate it from other objects that cannot be interacted with. In our
game worlds, we will essentially have two types of objects that we have
placed. The �rst are objects that are there to decorate the world, to give
it a real feeling, to give it a sense of lived in. The second are objects that
the player can interact with. As designers we should help the player to
di�erentiate between the two objects, otherwise knowing which one of
the 100 rocks that can be picked up and used becomes an experience of
frustration rather than fun.

The last thing that we do with our environments as far as giving information
to the player is continuing the backstory, story, and theme of the experience
we are wanting for the player. We can provide posters of villains on various
walls throughout a town to keep reminding the player of who the bad guy
is and why they are so bad. Or we can put books and parchments around
various houses that the player can �nd and read to learn more about the
history and backstory prior to the start of the game. We should also consider
the color scheme that we use throughout our environments as darker colors
give a more oppressed feeling, which may be an emotion we are wanting to
convey to the player.

7.2.3 Challenging the Player

We have alluded to this component already in that the environment is where
the plot events occur. However, while the speci�c plot event may be to �nd
the lost sheep and return them to the pen, it is up to the environment design
to provide the actual challenge for doing this. If we were to have an empty
pen and put �ve sheep directly outside of it that would not be much of

264

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

a�challenge. We could, instead, present the player with an open pen and then
place the �ve lost sheep somewhere that requires the player to go �nd them,
thereby presenting the player with a challenge, see Figure 7.1. The di�culty
of the challenge that we present to the player will be governed by the type
of game that we are creating and the type of game experience that we would
like for the player to have. Therefore, as we design the environment, we need
to take into account the things that the player can do; for instance, if the
player can jump four units horizontally, then we could make a ledge that is
3.8 horizontal units away thereby presenting the player with a challenge to
get across that gap in the world. Knowing what the player can and cannot do
plays an important role in how we design our environments for the games.

7.2.4 The Final Design

With a solid understanding of what we can do in our environments and
why we should do it, we will now put all of these to practice and design our
island of Barataria for Sancho and Sanson to �ght over. As we begin our
design, we need to consider the points that we have previously discussed
and make sure that we provide challenges for the player while still allowing
the player to complete the given task in an environment that is consistent
with the style and theme of our game project. We already have a natural
boundary for our game as it will take place on an island surrounded by
water, thereby preventing the player from leaving the island. However,
something that we will have to consider in regards to this is that even
though there is water, the game does not actually know that the player
cannot go that way. So, while we will be on an island surrounded by water,
we will still need some arti�cial boundaries in place to keep the player from
walking out into the water and eventually falling o� of our map. Perhaps,
some boundaries a little ways from the shore and when the player collides
with them we can display a message to the player saying “I don’t know
how to swim” or something along those lines so that the arti�cial boundary
blends into the natural one in a way that is intuitive and logical. Figure 7.2
provides a rough sketch of what we could do as the isle of Barataria. Creating
sketches of our environment is going to be very important as it will serve as

265

Environment

Sheep
pen

Sheep
pen

FIG 7.1 Two approaches to the lost sheep plot event.

a guideline for the actual construction even though we may end up varying
from it somewhat while we build the environment.

With the basic island in place, we can now begin to consider the story needs
of the island. As already mentioned, there is going to be a small abandoned
town on the island. As Sancho and Teresa arrive at their new kingdom, they will
have to clean things up before the residents will want to return to this island.
Cleaning things up will include getting the animals back where they should
be, eliminating the spiders that have taken over some parts of the island,
eliminating the skeletons that Sanson has called upon to be his enforcers, and
then �nally eliminating Sanson himself so that the island is safe for the peaceful
inhabitants to return to their houses. Figure 7.3 depicts another sketch of
Barataria, this time with some story elements added to it so that we can begin
to see how to break this environment apart into di�erent “levels” as the story
progresses. It is not necessary that your game world be broken down to so
closely mimic the Hollywood 3-Act structure; we opted to do so as an example
of the potential link between the story work and the game environment itself.
At this point, we may want to consider adding some more boundaries of sorts
to keep the player from wandering into another part of the story that we do
not want them to be interacting with until they have completed the current
task at hand.

266

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.2 Rough sketch of the isle of Barataria with its boundaries.

Now that we have our basic sketches in place, we will zero in and start getting
a little more detail regarding the �rst component of our story, �nding Dapple
and then getting the sheep back into their pen. Figure 7.4 provides a rough
detail sketch of this so that we can begin to imagine how this portion of the
environment might look. It is very possible that as we actually construct this
we will make some alterations to it to better �t the game not to mention
add details to it that will help it �ll it in better. However, while we may
make adjustments, those changes must still stay consistent with the overall
theme and design of both the game and story. If we stray too far, then the
game we end up making is not the game that we had designed. With these
rough sketches in place, we now have an idea of what types of assets and
things we will need to have available within Unity in order to construct the
environments as designed. This may be one of the most important aspects to
design prior to implementation. By developing a list of assets that we need,
we know what we need to go �nd or to create from scratch. It is important to
know what we will need and to get all of these things gathered together, or
to use some kind of place holders, while constructing our worlds (Table 7.1).

Note
Always remember that the actual game play is more important than the
theoretical designs we create on paper. Use the designs as guides, but
be willing to make changes if the design does not work quite as well as
intended.

267

Environment

FIG 7.3 Rough sketch of Barataria broken up for level progression.

268

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.4 The town on the isle of Barataria.

TABLE 7.1 A Brief List of Assets That Will Be Needed on Barataria

Bridges Barrels Boxes Gates

Trees Stumps Tools Chairs

Rocks Hay Tables Plows

Grass Blacksmith stu� Benches Well

House Wagons Walls Troughs

Barn Fence Bushes

Stable Walls Carts

7.3 Creating the Terrain in Unity

Download
You can find the starting scene for this chapter in the complete
project package on the companion website, the scene name is:
“Chapter7_part1.”

We will begin the construction of the terrain by creating a new scene within
the project folder; we will name this scene “Barataria.” We will begin the
construction of our terrain by adding a basic terrain game object to our
current scene. Do this by selecting GameObject � 3D Object � Terrain (see
Figure 7.5). Once the new terrain has been added to the scene it will appear
in the Hierarchy panel as well as be represented in the scene view as a very
large white plane. This is our starting terrain which can now be edited and
sculpted into whatever it is that we would like. It is also possible to import
height maps to use for the construction of a terrain and to even grab data out
of Google Earth and pull it into Unity to create a terrain based on real-world
GPS data. However, both of those techniques are beyond the scope of this
book; our goal is to get our minds and hands around the essential tools that
we have available to us here within Unity.

269

Environment

FIG 7.5 Adding a new terrain object to a scene.

The Inspector panel now displays both the properties of the current terrain
as well as the terrain editing tools that we can utilize to sculpt and decorate
our terrain. These are shown in Figure 7.6, and Table 7.2 provides a quick
reference lookup for each of the tools, though we will be spending only
a little time on each one. It will also be bene�cial at this point if we throw
our Sancho prefab object out onto the terrain somewhere to serve as
a scale point not only for the terrain itself but also for the other objects
as we begin to populate this world. Be sure to delete the main camera
that is in the scene (all new scenes start with a main camera and light by
default). We do not need this main camera as our Sancho prefab asset will
have a camera attached to him that we created when we constructed the
character�controller system.

Note
Full documentation of the Unity terrain system and tools can be found
in the Unity manual and documentation at: http://docs.unity3d.com/
Manual/script-Terrain.html.

270

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.6 The Terrain Inspector panel and tool options.

7.3.1 Settings

We will begin with the tool all the way to the right in the toolbar for the
terrain editor, the Settings tool. Most of these settings we are not going
to get into here, but we do want to take a look at the terrain resolution
properties as depicted in Figure 7.7. We are looking at these settings �rst as
any modi�cations made to them can clear out any other work that we may
have done to the terrain, so we will try to get it to the appropriate sizing �rst.

Note
Full documentation for the various terrain settings can be found
in the Unity manual located at: http://docs.unity3d.com/Manual/
terrain-OtherSettings.html.

271

Environment

TABLE 7.2 Quick Reference of the Tools within the Terrain Editor

Name Use

1 Height tools Perform sculpting of the terrain by raising, lowering, and eroding the terrain.

2 Texture painting Allows textures to be painted onto the terrain to give the surface the look
and feel that is desired.

3 Tree painting Allows the painting and placement of trees onto the environment.

4 Grass and details Allows the painting of grass, rocks, and other details onto the surface of the
terrain.

5 Terrain settings All of the settings and con�gurations for the terrain can be altered from this
location.

6 Terrain collider Controls and con�gures the collision surface that is created by Unity to work
with the created terrain.

FIG 7.7 The default terrain resolution settings.

The �rst settings that we want to look at are the terrain width, length,
and height. These are de�ning the size of the terrain in three-dimensional
space. The sizes of these dimensions are in world units, so if we know the
world unit size of other assets we can construct a reasonable terrain based
o� of those values with a little bit of math (e.g., Sancho is roughly 1.5 Unity
world units tall as we have constructed him thus far). Also, on the issue of
Unity world units, a unit in Unity is equal to 1 meter, although, realistically
speaking it can be whatever we want it to be, but as far as the physics
engine is concerned 1 unit is 1 meter. Or, we can look at the size of the
Sancho asset that we have added to the scene and construct the terrain
size visually. Figure 7.8 gives a rough idea of these scales as the terrain
pictured is the default terrain size and Sancho has been imported at his
default prefab size in the top right corner of the terrain, he is the red mark.
We can also get a feel for the size of the level by starting the game, since
we are using our Sancho prefab, he will have all of the stu� that we have
already constructed and will be ready to start running around this newly
discovered scene.

A character can run off of a terrain, depending on how they were
constructed and ours can run off the terrain, thereby falling forever
into nothingness. This is something that we need to be aware of even
though we are going to surround our island with water, we will need
some terrain under the surface of the water so that the player can run
through shallow water without falling into oblivion. The height value
will determine how high we can construct the terrain. Our environment
is not going to have any high mountains so this value does not need
to be anywhere near as high as it is so we will go ahead and lower the
terrain height to a value of 75 or so and set the width and length to be

272

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.8 The default terrain size in comparison to the default Sancho character.

250 although you can experiment with these values by running Sancho
around to find an island size that feels best to you. These values can be
changed later and with the flat terrain it is difficult to really get a feel for
these sizes. When raising terrain it will become a flat surface once the
terrain has been raised to the maximum value specified here. The other
settings are fine at their default values.

Note
There are two pitfalls to watch out for when making terrains. The �rst is
making the terrain too large, thinking that we want an epic landscape to
explore; keep in mind that we need to decorate this epic landscape and
this takes time. The second, is making the terrain too small for the things
that we want on it. Rule of thumb, make it just a little bigger than you
think it should be and always remember you can change the width and
height if need be later.

7.3.2 Terrain Collider

As we mentioned earlier, the Terrain Collider is responsible for the collision
object that will be attached to the terrain to keep other objects from falling
through it, hopefully. The terrain collider will create a collision object that
matches the surface of the terrain, much like a mesh collider can be used to
exactly match the surface of a mesh that has been imported into the game.
The three properties of the Terrain Collider, as pictured in Figure 7.9 provide
the only con�gurations available for the collider object on the terrain. The
material references the Physics Material to be applied to the collider object.
We are not utilizing Physics Materials within this project, but we could
consider this to be a material that would provide presets for the friction and
bounce e�ects when an object collided with the surface. We could create a
terrain of Jell-O by using a Physic Material with a soft, rubbery bounce back
on it, for instance. The Terrain Data property refers to which Terrain object
the collider is referencing when creating its collision surface. Notice that in
the Project pane, there is a terrain object for the terrain that we created in
our new scene. Finally the Enable Tree Colliders property will either turn the
colliders on trees painted onto the terrain on or o� depending on the setting
of the property. Keep in mind that trees painted onto the terrain are not the

273

Environment

FIG 7.9 The Terrain Collider properties.

same as trees added as individual objects into the game world, but we will
have more on this later.

7.3.3 Height Tools

Now that we have specified a maximum height for our terrain to keep
from constructing the Himalayas we will turn our attention to the terrain
height tools themselves. The first of our terrain height tools is the raise/
lower tool, number 1 in Figure 7.10. This tool allows us to raise or lower
the terrain by sculpting these details through the brush settings that
we specify. The brushes section of the Terrain tool component allows us
to select the type of brush that we want to use for doing our sculpting.
Currently, it is not possible to import or create custom brushes, though
the brushes available provide a tremendous amount of flexibility and
creativity already.

The �rst four brushes to select from are standard round brushes with various
fallo� amounts. This fallo� is an important concept to grasp if it has not
been encountered before. Figure 7.11 provides a graphical representation of
the di�erence between the �rst brush and the fourth brush when painting
with a solid black color. As can be seen, with the �rst brush, the center point
has 100% of the black color and as we move along the radius of the brush
size to the perimeter of it that amount drops until it eventually reaches 0%
of the black color at the perimeter. On the other hand, the brush with no
fallo�, the fourth brush, has 100% of the black color throughout the area of

274

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.10 The three terrain height tool buttons.

the brush with no decrease in this percentage. This is going to translate into
the sculpting by having 100% of the sculpting power in the center of the
brush and decreasing until we get to the perimeter. If using one of the oddly
shaped brushes, then the 100% points will be the darkest portions of the
brush with the fallo� going through shades of gray until reaching 0%.

The next aspect of the brushes will be the Brush Size and the Opacity
settings. The Brush Size is going to determine how large the brush is. It is
generally best to start o� with a very large brush for broad strokes and then
decrease the brush size when doing detail work. The Opacity is going to be
the strength of the brush or how hard we are raising/lowering at the 100%
point within the brush fallo�. These values take some practice and playing
around with to get a solid understanding of and the reader is encouraged
to play around with a few di�erent terrains and di�erent brush settings to
see how things work. With this tool holding down the left mouse button
will raise the terrain while left-clicking with the SHIFT key pressed down will
lower the terrain.

The next tool, Paint Height (number 2 in Figure 7.10), is essentially the
same as the first tool except rather than sculpting the height directly, we
can set a target height and the tool will then raise or lower the region
appropriately in order to hit that target height. Setting the target height
can be done holding down the SHIFT key and left-clicking a region on
the terrain or by entering a specific value with the Height slider beneath
the Opacity setting. The Flatten button (to the right of the Height slider)
will flatten the whole terrain to the height level that is selected. This is
an interesting tool that can be very useful for resetting or even raising
terrain to a default level. With this tool it can be easier to create paths,
roads, plateaus, or other flat surfaces within a terrain assuming that the
flat surface is all at the same height. One final note on this tool, terrains
cannot be lowered below the level of 0 (which is the default level that
terrains are on), so if we are going to want valleys or rivers or what not,

275

Environment

FIG 7.11 Brush fallo� on the left versus no fallo� on the right, both brushes are the same size.

the terrain will need to be raised before it can be lowered, which we can
do very quickly with this tool.

The �nal tool is the Smooth Height tool (number 3 in Figure 7.10). Unlike
the previous tools, this one is not intended to raise or lower the terrain but
rather to get the terrain to be smoother in its transition between heights.
When using the other tools, the terrain that is raised or lowered can end up
with some rough and jagged edges. The Smooth Height tool can be used to
get these to transition better. Jagged height transitions will become di�cult
to navigate sections of the game world in which the player is more likely
to get stuck when traveling the environment, which is something that we
would prefer to avoid whenever possible. The settings for this tool work the
same as the settings for the Raise/Lower Terrain tool. Figure 7.12 depicts the
di�erence between a noisy terrain and a smooth terrain. Both of the terrain
patterns were generated with one of the noisier of the Raise/Lower Terrain
brushes. However, the pattern on the right of the image was then smoothed
with the Smooth Height tool to create a more eroded kind of surface and a
surface that would be easier to navigate for the player. The di�erent controls
for creating terrain are summarized in Table 7.3.

Now that we know what tools are available to us and how to use them
it is time to create the isle of Barataria, or at least version 1.0 of this
environment. Using the sketch that we created earlier, we will create an
environment in which the outer portions are lowered (below sea level)
to serve as our beach areas. We are also going to create the rivers that
are being used to divide the island into the different chapters of the
story. We will need to keep in mind the size of Sancho to avoid making
terrain details that are overly exaggerated within the game world.
Another thing for us to consider is that the houses and buildings that
we add to the environment later will need to have flat surfaces that they
are put onto, perhaps a place for the Paint Height tool or just something

276

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.12 A noisy and smooth terrain feature set.

to keep in mind as we construct our game world. Also, as we have
mentioned, pay attention to scaling, try some different dimensions for
your terrain with the intended player object to get a feel for how big or
small the area is before spending a lot of time on the construction of
the�terrain.

 1. Make sure that Sancho is at 0 on the Y-axis, at a height of 0.
 2. Use the Paint Height tool to raise the terrain to a good level above

sea level. The idea here is to use Sancho as a visual base for how deep
the water will be he can run in. We have set the Height property
to�1 and used the Flatten button to raise the terrain to this level,
see�Figure 7.13.

 3. Use the Raise/Lower Terrain tool to lower the boundary of the
terrain�to be beneath sea level and leave the rest of the island
raised.

 a. We have used a Brush Size of 60 and an Opacity of 50.
 b. We used the second of the Brush types.
 c. Remember, hold the SHIFT key with the left mouse button pressed

in order to lower terrain.
 4. Carve out the rivers with the Raise/Lower Terrain tool.
 a. Change to the �rst of the Brush presets, that fallo� will be more

appropriate for a riverbed.
 b. Drop the brush size to the mid-20s.

 5. Add some hills to portions of the island with the Raise/Lower
Terrain�tool.

 a. A higher opacity will make the hills steeper, experiment.

With the basic terrain in place, we will add some hills and other details
after we get some other assets placed on it, we are ready to test it and
see how it feels. However, without some textures and other assets on it,
it is fairly difficult to get a good grasp of the terrain as we have created it
thus far. Figure 7.14 depicts the roughed in island as it currently stands.

277

Environment

TABLE 7.3 Summary of the Controls with the Terrain Height Tools

Use Controls Tool

Raise terrain Left-click or hold down left mouse button while moving
mouse.

Raise/lower terrain

Lower terrain Hold down the SHIFT key while left-clicking or hold down
left mouse button while moving mouse, with SHIFT key
pressed.

Raise/lower terrain

Raise/lower terrain Left-click or hold down left mouse button while moving
mouse. Will raise or lower to the level speci�ed by the
target height.

Paint terrain

Smooth terrain Left-click or hold down left mouse button while moving
mouse.

Smooth height

The very small black speck in the lower left-hand corner is Sancho, so this
island is quite large, perhaps too large, but we can block portions of it off
and leave them for later development. Therefore, we need to go ahead
and get some basic textures and water thrown onto this terrain and start
getting our pieces to come together.

278

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.13 The terrain adjusted to its deepest water point with Sancho as a guide.

FIG 7.14 The roughly sculpted island of Barataria.

Note
If while testing, your character runs through the terrain or under the
terrain or just generally does not seem to stay on the terrain the way
that it should, save your scene and try again. With the early versions of
Unity�5, saving the scene eliminates this slightly odd behavior.

7.4 Dressing a Terrain
with�Standard Content

Terrain content is slightly di�erent from other assets that we import into
a project. Assets that we use on a terrain are assets that are added to the
terrain through one of the terrain tools that we have mentioned in the
introduction to the Unity terrain system. Trees, bushes, grass, dirt textures,
grass textures, and other similar assets are all added to the terrain through
the tools provided by Unity and as a result are treated slightly di�erently
than other assets. Trees that are painted onto the terrain are not individual
trees that we can click on and reposition if we like. We could add the trees
as individual assets; however, this would prove to be a very tedious and
frustrating process. Likewise, we could add bushes and other small details to
the terrain as individual assets; however, it will be much quicker to use these
tools. Perhaps one of the most important will be the Paint Texture tool as we
will use this to paint the various textures onto the surface of the terrain to
give it the look and feel that we want.

Our project currently does not contain any assets that we can use with the
terrain tools. We could go �nd some on the Asset Store or even through other
free or purchased sources on the Internet. However, we are going to utilize
the standard environmental assets that come with Unity 5. To add these to
our project select Assets � Import Package � Environment as shown in
Figure 7.15. Once the package as �nished decompressing, we do not need
everything that is included within the Environment package, we can deselect
the unchecked items shown in Figure 7.16 as it will not be necessary for us to
worry about CrossPlatformInput and the scripts available in the Utility folder
during the construction of our island terrain. Therefore, we click the check
box to deselect the following folders: Editor, Utility, and CrossPlatformInput
(inside of the Standard Assets folder). This will leave us with a new folder in
our project named Standard Assets and within it will be some assets that we
can use to decorate our new island, speci�cally we will have trees, ground
textures, grass textures, and some water.

7.4.1 Painting Textures

The �rst thing we would like to do is get some basic textures onto our terrain
to have an idea of what areas are what type of surface. We can use textures
that we �nd through the Asset Store or free ones that we may �nd online
(there are several free texture sites online) or even textures that we have

279

Environment

purchased as part of a texture library or we could make our own from scratch
using a 2D graphics program such as Photoshop. For our purposes, we will
use the terrain textures that are provided by Unity as part of the Standard
Assets package that we just added to the project. In the project pane, browse
to Standard Assets � Environment � TerrainAssets � Surface Textures. Your
Project pane should now match that of Figure 7.17. We can see that we have
the essential textures for a terrain, speci�cally: cli�, grass, rocky grass, rocky
mud, and sand. We are going to apply these textures to various areas of our
terrain; Table 7.4 provides an overview of where we would like to apply these
textures. Before painting textures onto a terrain it is important to consider
what we want the terrain to look like at various areas.

Note
When using other textures as sources for your terrains, be sure that the
textures are tileable, which means that they can be repeated over a
large area without an obvious seam. Figure 7.18 depicts the di�erence
between a tileable and nontileable texture; notice the obvious seam
horizontally and vertically on the nontiled texture versus the tiled
texture. Both textures in the example were created by tiling four copies
of the same image into the texture, but the one on the left tiles without
the obvious seams of the nontileable texture.

280

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.15 The location of the standard Environment Asset package.

Unity’s texture painting tools will allow us to layer textures with opacity
as well, so we are not limited to only one texture per section of terrain.
Figure 7.19 depicts the properties that are available to the Paint Texture
tool. The Opacity and the Target Strength work together to allow the
blending of one texture with another. The Target Strength setting
specifies the maximum opacity that we can get when we keep painting
the same texture over an area. Just as the Raise/Lower Terrain tool would
raise or lower more when we applied it to the same area, the texture we
are painting will be painted thicker when we keep applying it to the same
area. It will have the opacity specified by the Opacity setting, but we can
make the texture more opaque (less transparent) by continuing to paint
it over the same area until we have reached the Target Strength. With a
Target Strength of 1 that means that if we keep applying the texture to
the same area we will eventually not be able to see any textures that may
have been beneath that area. Before we can paint any textures onto our

281

Environment

FIG 7.16 The elements within the Environment Asset package to import.

282

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.17 Location of the default terrain textures within the Project pane.

TABLE 7.4 A List of the Terrains and Textures to Paint

Texture Locations

Cli� The sides of any steep mountains that we may have carved (or we CAN use
the smooth tool to get rid of the steep cli�s if we would rather).

Grassy hill All areas that we want grass on.

Rocky grass Any areas that we want grass showing through rocks, CAN also do this
through blending the textures.

Rocky mud The riverbeds.

Sand The beaches and also used within the town area where the grass has been
killed.

283

Environment

(a) (b)

FIG 7.18 A tileable (a) versus nontileable (b) texture.

FIG 7.19 The Paint Texture settings.

terrain, we will need to add some terrain textures to the list of Textures
applied to�the terrain.

 1. Select the Paint Terrain texture tool (number 2 from Figure 7.6).
 a. Click the Edit Textures in the Paint Texture settings.

 i. Select Add Texture from the pop-out menu, the Add Terrain
Texture box will appear (Figure 7.20).

 A. Drag the SandAlbedo texture from the project pane onto
the Albedo slot in the dialogue box (see Figure 7.21).

 ii. Click the Add button to close the Add Terrain dialogue.

When we closed the Add Terrain Texture dialogue box notice that Unity
automatically applied that texture to the whole surface of our terrain. This is
the default texture on the terrain, or we can think of it as the base layer and
the rest will be added above it. We can already picture that if we adjust the
Opacity settings when painting a grass texture onto this base layer we will be
able to have some grass growing within the sand, or some sand emerging from
our grass however it is we want to look at it. If we keep painting the grass over
the same areas we can develop a nice thick grass �eld or paint sparingly and
having a dying grass �eld. The Size and O�set options we have left alone until
we can take a closer look at how the texture looks on the surface of our terrain.

284

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.20 The Add Terrain Texture dialogue box.

To do this, switch to the Game View and we can now see Sancho standing on
the sandy terrain, although the sand does not seem quite right. Now we will
adjust the size of the terrain texture to see if we can �nd something that feels
a little better with Sancho. Select the Edit Textures button again and this time
click Edit Texture from the pop-out menu which will bring us back to the Add
Terrain Texture dialogue (except now it is labeled as the Edit Terrain Texture
dialogue). Adjust the size values until you �nd one that feels about right. It is
best to keep them at the same number since the original texture is a square
we want to scale it (change the size) uniformly in both directions to maintain
the original ratio. We have gone with a value of 3.5, though you are free to
select any value that you prefer, select the Apply button after making changes.
Figure�7.22 depicts the di�erence in the sizing of the terrain texture. Now that
the base layer is in place, we will add the grass texture above it.

 1. Select the Edit Textures button.
 a. Select Add Texture from the pop-out menu.

 i. Add the GrassHillAlbedo texture to the Albedo portion.
 A. Adjust the sizing to match the sizing that was used on the

sand, we can adjust it again later if it turns out not too match.
 B. Click the Add button.

285

Environment

FIG 7.21 The SandAlbedo texture assigned in the Add Terrain Texture dialogue box.

 2. Select the grass texture from the Textures applied to the terrain,
should now be highlighted with a blue line underneath (Figure 7.23).

 a. We will paint the transitions between sand and grass.
 i. Use the �rst of the Brush presets.
 ii. Change Brush size to 25.
 iii. Change Opacity to 3.
 iv. Use left mouse button to paint the edges of the beach around

the island, see Figure 7.24.
 b. Fill in the rest of the grass.

 i. Select the third or fourth brush preset.
 ii. Change the Brush Size to 75.
 iii. Change the Opacity to 50.
 iv. Paint in the rest of the grass areas.
 A. To get thicker or darker grass keep painting the same area.
 B. For lighter or patchy grass lower the Opacity.
 C. Leave an area for the buildings, will apply more textures

there later.

Note
Many times it is easier to paint terrain textures with single clicks of the
mouse rather than holding down the mouse button, as this gives more
precise control over the �ow of the texture.

We have now painted in the sand and the grass areas of our terrain; Figure�7.25
shows the terrain as it currently stands. Painting in other textures will be left as
an exercise at the end of the chapter, but we can already begin to think ahead
toward the muddy rocks in the riverbeds and some rocky grass areas around
the mountains or maybe even in the �elds to break them up some.

286

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.22 Left is the default texture size, right is the new size of the terrain texture.

287

Environment

FIG 7.23 Blue highlight at bottom of selected texture.

FIG 7.24 The grass borders painted in with a low opacity so the sand can creep through.

7.4.2 Adding Water

With the essential terrain textures painted onto the terrain, we are
going to add some water for both the ocean and the river through
the island. Unity 5 includes several di�erent water assets that we can
utilize within our games, depending on the level of detail that we want
from the water. These water objects can be found within the Standard
Assets�� �Environment folder of our project. There are two folders for
water, one is labeled Water and the other is Water (Basic). The essential
di�erence here is that the Water folder contains all of the assets needed
for the water objects that were included with the licensed Pro version
of Unity�4 whereas the Water (Basic) folder contains the assets that were
included with the original free version of Unity 4. With the release of
Unity�5, all of the Professional features (well nearly all of them) are included
with the Personal Edition of Unity. So, even as free users of the game
engine, we have access to the Professional water asset if we want that level
of detail for our projects. The Professional water assets include very nice
re�ection and refraction features to de�ne how the light behaves as it
comes in contact with the water. The basic version of the water, however,
is going to work very well with this particular project and will blend in
with the rest of the assets that we are using. Both sets also include prefab
objects for daytime or nighttime lighting conditions and environments.
The water assets ARE circular planes, except for the Water4 object which is
a rectangular plane.

288

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.25 Terrain with the sand and grass textures painted.

Note
Now that we are starting to put our game together more, we need to
be aware of the quality level between assets. Our game should have a
consistent look and feel throughout and our assets should all be of similar
quality level so as to not stand out in sharp contrast with each other. This
is the driving reason behind our selection of water for the scene.

 1. Find the WaterBasicDaytime Prefab within: Standard Assets �
Environment � Water (Basic) � Prefabs.

 2. Drag the WaterBasicDaytime prefab into our game scene.
 a. Use the Top view (click the green arrow on the movement gizmo

in top right of Editor) to position the Water asset roughly in the
middle of the terrain.

 b. Change the X and Z scale value of the Water asset to get the circle
around our terrain (200 worked well enough as it should be large
enough to fade into the horizon in game play).

 c. Use the Raise/Lower Terrain tool to make any further adjustments
to the terrain.

 i. For instance, raise the terrain around the river or use the
Smooth Terrain tool to smooth out the transition to the beach.

Now the water has been added to the scene and we have made some more
changes to our terrain to get a better feel for the environment. It is starting to
come together quite nicely and is beginning to look like a good world. If the
scale of the water asset is too small then the player will see the edge of the
world rather than the illusion of the water going on to the horizon; Figure�7.26
depicts our work thus far and while it does not have �owing tropical beaches
of white sand begging for tourists, that was not exactly one of our goals.
Although, as we move on to adding some trees and other decorative items to
this terrain, we may return to the Terrain Tools for some more tweaking.

7.4.3 Adding Trees

Trees are an interesting asset within Unity and must be treated di�erently from
other assets, at least if we want to be able to utilize the Place Trees tool within the
Terrain Editor (number 3 of Figure 7.6). The Place Trees tool allows us to paint trees
onto the surface of the terrain just as we have done with the textures. This makes
for a very quick approach to putting trees onto our game world. However, when
we are painting trees, we are painting only one type of tree and so we need to
be very aware that having a thick forest of the same tree is a rather odd looking
experience for the gamer when playing our levels. Unity provides us with three
di�erent trees that we can put onto our terrains (though we can create our own
trees with tools such as SpeedTree or traditional modeling packages such as 3ds
Max or Maya LT). As our focus is not on the process of creating the assets but how
to use assets in a game, we are not going to look into the process of creating our

289

Environment

own custom trees; we will content ourselves with the three supplied trees. There
is a broadleaf tree, a conifer tree, and a palm tree as can be seen in Figure�7.27. We
can search through the Asset Store for more trees, but these three�will take care
of our needs for the project at hand.

For our island layout, we are going to put some palm trees near the beach
area. The broad leafs we will use through the pasture region, though
somewhat sparingly as we want it to be more pasture than forest. We will
have a denser forest area in one of the other sections. Finally, we will use the
conifers for our mountainous regions of the island. But, �rst we will take a
look at the Place Trees tool in more detail before trying to use it. Figure 7.28
depicts the properties that we have available with this tool.

The Brush Size and Tree Density settings are similar to the Size and Opacity
settings of the previous tools that we have looked at. A higher tree density
will place more of the trees within the area de�ned by the brush. Notice that
with this tool there are no brush presets, only a circular brush with no fallo�
range. This means that trees will be randomly distributed within the area of
the brush and that the number of trees placed by Unity will be de�ned by the
Tree Density value. The Random Height setting allows us to randomize�the
height of the trees which will allow for some variety among the trees and
help them to not all look exactly alike. The Lock Width to Height setting
allows the width of the tree to scale uniformly to whatever random height the
tree is at. With that option turned o�, we can select a random width for the

290

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.26 The isle of Barataria after the water has been added and the terrain tweaked some.

291

Environment

FIG 7.28 The settings of the Paint Tree terrain editing tool.

FIG 7.27 The standard trees: broadleaf, conifer, and palm.

tree or we can opt to have the tree be the width that is de�ned by the prefab
object that we are using. The Color Variation and Random Tree Rotation are
vital settings for the illusion of di�erent trees within the forest. Both of those
settings will provide subtle changes to either the color or the Y-axis rotation
of the tree such that at �rst glance the trees will seem di�erent. Of course
given serious scrutiny players will notice that the trees are the same, have you
taken a close look at the trees in the games that you are playing recently?

Before we begin to place trees onto our terrain we need to take a quick look
at the two di�erent methods that we have available within the terrain editor
toolset. The �rst approach is to paint the trees utilizing the settings that we
have just explained. When doing so, trees will not be painted on top of other
trees, so we can create forests of di�erent types of trees by decreasing our
density and painting multiple types of trees in the region. We select which
tree we want to paint in the same way that we selected which texture we
wanted to paint in the last section. The other method is to use the Mass
Place Trees button. When we use this button to place trees, we are given the
opportunity to select the total number of trees to be placed, almost like a
density for the paint tool, and the Place Trees tool will then place that total
amount of trees randomly throughout the whole terrain. This approach is very
bene�cial if we have a uniform terrain that will contain the same type of trees
throughout the whole environment. The random settings will be utilized with
this tool as well. The primary drawback to this tool is that it will randomly place
trees throughout the terrain, which in our case would include the portions of
the terrain that are currently underwater. Any erroneously placed trees can be
removed by holding the SHIFT key while left-clicking with the brush.

 1. Select the Edit Trees button.
 a. Select the Add Tree option from the pop-out menu.

 i. Drag the Palm_Desktop tree from Standard Assets �
Environment � Palm to the Tree Prefab slot in the Add Tree
Dialogue.

 ii. Click the Add button.
 b. Decrease the brush size such that we can limit the painting of the

trees to the shoreline area of the island. We have used a setting of
5 in our example.

 c. Leave Random Tree Height selected.
 d. Leave Lock Width to Height selected.
 e. Change Color Variation to 1 to maximize the variation of color

within the trees.
 f. Leave Random Tree Rotation checked.
 g. Paint palm trees along the beach areas of the island.

 i. CTRL-Z will undo any painting.
 ii. SHIFT-Left-clicking will erase painting.
 iii. Experiment with di�erent density settings to �nd the tree

density that you like best for your terrain, in our example we
have used a setting of 45.

292

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

We have now painted some palm trees onto the beach head regions of our
island as seen in Figure 7.29. We can look at them through the Editor and
make sure that we like the general placement of the trees; however, to get a
better idea of how the trees are working with our environment, we need to
go ahead and play test the game and see how they feel with Sancho running
around. There are several questions that we want to answer to as we do these
play tests:

• Does the graphical quality of the trees blend well enough with Sancho?
• Are the trees too tall in comparison to the lead character? Too short?
• Are the trees too wide in comparison to the main character? Too skinny?
• Are there too many trees in our environment? Too Few?

With these questions as a guide we can explore the beach head with Sancho
and see what we think. The too many or too few question is a more relevant
one than we may �rst think. If we have too many trees in an environment
not only might we need to start thinking about performance issues, but we
are also hiding our environment. Basically, the player cannot see the game
world as well as we may like, then again maybe we are trying to hide things
from the player. The needs of the story and the needs of the game tie into
how many trees we place and how the environment feels with those trees
once we are playing the game. There is no rule of thumb that can be applied
here; each game and environment is unique in its needs and in its intended

293

Environment

FIG 7.29 The initial palm trees that have been added to the terrain.

result. We are going for a light platformer action–adventure kind of thing, a
game that does not take itself too seriously, yet is still consistent within its
own story world. With that goal in mind, the amount of palm trees seems
reasonable at the moment.

With the palm trees in place, we will go ahead and add some of the Broadleaf
trees. These trees would make for excellent forest trees which is how we will
approach the Northern portion of the island. But, they will also make for nice
shade trees within a pasture which will be our approach to the Southwestern
portion of the island, the starting area. Use the same steps previously
outlined to paint in the Broadleaf trees, you will �nd them in Standard Assets
� Environment � Broadleaf � Broadleaf_Desktop. Utilize the questions
from previously as well to get the environment that you want. Figure 7.30
depicts our current terrain with the Broadleafs added in the way that we have
described.

Note
When painting trees onto a terrain, it is a good idea to paint a small
number near the main character and follow through with the questions
on height and graphical quality before spending a great deal of time
painting throughout the terrain. This allows us to get the height
adjusted however it feels best for the environment, then we paint trees
throughout the terrain.

294

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.30 Barataria with the Broadleaf trees added to it.

Realistically speaking, we have already tested the graphical quality of the
trees with Figure 7.27 when Sancho was standing next to them, for the most
part it looks as though the tree should do �ne, though those Broadleaves
and conifers sure feel tall, but in game play it is easy to picture Sancho
climbing one of those Broadleaf trees. However, if we want to adjust the size
of the trees, as shown in Figure 7.31, we can turn o� the Random Tree Height
check box and adjust the value in the slider box to be whatever we want. An
interesting thing at this point, since we will be playing the game from ground
level, the player will not actually see the height of the trees so having all of
the trees as the exact same height will not actually impact the appearance of
the game while playing.

One last comment before moving on, the Refresh button next to the Edit
Trees button does not allow you to make brush setting changes and then
have them applied to the trees that are on the terrain. This is why it is
strongly encouraged that you do test paints with your trees to see how
they look and feel before painting the whole terrain. Rather, the refresh
button is used to update the trees whenever you have made changes to
the actual mesh of the tree inside of the Project pane. If we were to load
the palm tree into SpeedTree and modify it so that it looked di�erent,
perhaps straighter, for example, we would then re-import that asset into
our project. However, in order to get the palm trees already on our terrain
to re�ect the changes made to the original mesh we would have to select
the Palm_Desktop tree from the Trees selection in the Place Trees tool and
click the Refresh button. Now we are ready to move on to grass leaving the
conifer tree placement as an exercise. Perhaps it would be nice to raise that
whole Southeastern side of the island to a higher elevation and populate it
with conifer trees.

295

Environment

FIG 7.31 Left is the default tree size, right is the tree size set at 0.7.

7.4.4 Adding Grass

The last tidbit of terrain detail that we can add is going to be some grass,
weeds, shrubs, or other small greenery. These are created through the use of
Billboards. Billboards are actually 2D textures that turn to face the player so
that the player is always looking at them from a perpendicular or straight-on
direction. This is going to take less computing power when running than
having actual 3D shrubs in our game world, yet will provide just enough extra
detail to give the environment a believable feeling, which ultimately is our goal.

Note
As we continue adding content into our game world we need to always keep
performance issues in mind. With every polygon or texture that is added,
there is memory and processor time involved. The more we add, the more
resources we need and the slower the game will run, especially on lower end
systems. While it may seem like a great idea to throw every bell and whistle
into our game that we can �nd, always remember that if our players cannot
play the game then it really does not matter how cool it looks. One of the
biggest culprits of performance is real-time shadows, they look great but
they slow things way down, more trees equals more shadows.

To add grass and other details to our terrain, we use the Paint Details
tool (Number 4 from Figure 7.6). As can be seen with Figure 7.32, the
Paint Details tool does not provide us with any properties that we have
not already utilized with the other tools. In fact, it looks identical to the
Paint Texture tool and the settings work the same as that tool did as
well. The Refresh button will work the same as it did with the Place Trees
tool. However, the Edit Details button is going to have some di�erent
options, we can either Add Grass Texture or Add Detail Mesh. The grass
texture is going to be a 2D billboard as we mentioned and is not limited
to “grass” speci�cally, but can be any type of small plant that we want
to place on the�surface of the terrain. The Detail Mesh will allow us to
add rocks (though�not really large rocks such as boulders as we will see
shortly) or other modeled details. This will let us paint these details onto
the terrain�rather than having to individually place them throughout the
terrain�which would be extremely time consuming.

We will begin with the Add Grass Texture properties, as shown in Figure�7.33.
The �rst setting is the texture itself that we will be using. As has been
mentioned, textures are 2D images, so you cannot add a mesh to this slot,
but only a 2D image. Min Width and Max Width provide the minimum and
maximum width of the texture when placing them; this in turn creates a
nice randomization especially when combined with the Min and Max Height
properties. We will need to experiment some to �nd the best values for these
settings before painting a lot of grass onto our terrain. When grass is painted
onto the terrain, it can be painted in patches and the Noise Spread property
allows us to better randomize the patchiness of these sections of�grass.

296

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

The�higher the value of the Noise Spread the more randomness that we will
have within the patches of grass that are placed on the terrain. The Healthy
and Dry color provides a color range for the system to select from to give
even more variety to the appearance of the grass. Once again, testing will
need to be done to �nd the best colors here as these colors are essentially
color overlays onto the texture. Therefore, if we set the Healthy Color to be
white then we will see the texture exactly as it appears with its true coloration;
however, by providing a green hue, we are overlying that green hue onto
the texture which may or may not provide the look that we want. Finally, the
Billboard check box allows us to turn on or o� the billboard features that were
discussed earlier. As a general rule it is best to leave this checked so that the
grass will always be facing the player.

 1. Select the Edit Details button.
 a. Select Add Grass Texture from the pop-out menu.
 b. Add the GrassFrond01AlbedoAlpha texture (Standard Assets �

Environment � TerrainAssets � BillboardTextures) to the Detail
Texture slot.

 c. Leave the other settings at default for a test.
 d. Click the Add button.

297

Environment

FIG 7.32 The Paint Details properties.

 2. Paint some grass around Sancho.
 a. Notice how quickly the details are painted.

 i. Adjust opacity and Target Strength as needed. We have placed
ours at 0.05 and 0.06. Grass can be laid on thicker by painting
over areas as needed.

 b. Play the game to view the grass and answer the questions
concerning it that we asked about trees earlier.

 i. We found the default grass to be too high, nearly up to
Sancho’s shoulder. So will lower the height for the next test.

 3. Use CTRL-Z to undo any painting.
 4. Make adjustments to the grass texture by selecting the Edit Details

button and Edit from the pop-out menu.
 5. Once the settings are set, paint the pasture area with grass.
 a. We found the Healthy Color to be a little too green and toned it back

toward white some while darkening it as well (RGB = 110, 97, 198).
 b. We set our heights to range from 0.2 to 0.7.
 c. Finally, we raised the Opacity of the brush up to 0.35 for our �nal

painting of the thick grass in the pasture.

298

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.33 The Add Grass Texture property dialogue box.

Note
When painting details, Unity has a Level of Detail (LOD) system that it
uses which means that you will only see the details on the terrain when
you get close to them. So, it will be necessary to move the view around in
the Editor pane to see di�erent portions of the island while painting.

With the grass painted throughout the Southwestern portion of the island,
we can do some cleanup. By decreasing the brush size and using the SHIFT
key when painting we can get the brush size down to remove any grass that
might have been placed on the beach itself, or even within the water which
tends to be a fairly common occurrence. We will return to deleting grass and
touching things up after we place the buildings into the environment and
when we create any paths through the area as well. While play testing the
scene, you may have noticed that the grass is swaying like water with waves
passing over it. This is to simulate wind; however, the trees themselves are
not moving which creates a disjointed appearance. To �x this, return to the
Terrain Settings and in the Wind Settings section, adjust the values while the
game is running so you can see the change, until you get the grass to settle
down. In our Wind Settings we adjusted the Bending to be 0.05, there is still
some movement in the grass but not very much. The same could have been
done through adjusting the Speed setting as well.

The Add Detail Mesh properties are much the same as the Add Grass Texture
properties as shown in Figure 7.34. Rather than using a 2D texture, this option
utilizes a prefab object that contains a mesh. The Width, Height, and Noise
Spread options work the same as they did with the Grass Texture tool. The
Healthy and Dry color is a bit odd, especially if we are using this in conjunction
with objects such as small rocks. Otherwise, the color settings work just as they
did with the textures. The �nal setting is the Render Mode. A Render Mode of
Grass treats the detail meshes as though they were 2D billboards like the grass
that we painted. The other option is Vertex Lit which will render the meshes as 3D
objects within our environment which will be what we want in many situations
when using complex mesh shapes. The Detail Mesh tool is best used for painting
shrubs or other objects that provide details to the terrain, but that the player can
walk through because collisions are not supported with Detail Meshes, hence
a reason to not paint large boulders with this tool. Also, be aware that meshes
with materials that have transparencies on them do not always show up correctly
when using the Paint Details tool. We have found the Paint Details tool best used
for grasses, weeds, and other ground clinging details, for all others we use the
Place Trees tool, which we will show a couple of examples of next.

Note
For details on a terrain, we can use the Place Trees tool or the Paint
Details tool. Ultimately which tool we want will be de�ned by whether
the detail is a 2D texture or a mesh and whether we want the player to be
able to collide with the object or to pass right through it.

299

Environment

 1. Open the Asset Store (Window � Asset Store).
 2. Search for “bush free.”

 a. Several options appear, but we are going to utilize the pack created
by Nobiax/Yughues (Yughues Free Bushes), select that link.

 i. Select the Download button.
 ii. After the package is downloaded and uncompressed, select

OK to import all of its contents into our Project.
 3. We now have a new Folder (Meshes) within our Project pane and this

folder includes the bushes that we just added.
 4. Add Bush 04 prefab to our scene to test (Meshes � Bushes �

Bush�04).
 a. Notice that the bush is really big, too big for our environment.
 b. Find the Bush 04 mesh �le (Meshes � Bushes � Bush 04 �

Meshes).
 i. In the Inspector panel change to the Model tab and adjust

the Scale Factor to 0.02.
 ii. Click Apply.

300

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.34 The Add Detail Mesh properties dialogue box.

 5. In the Inspector panel for Bush 04 remove the Mesh Collider
component, we are going to allow the player to walk through the
bushes.

 6. Select the Apply button near the top right corner of the Inspector
panel to update the Prefab object with our changes (no collider).

 7. Remove the Bush 04 prefab from the scene.
 8. In the Place Trees tool of the Terrain inspector, select Add Tree from

the Edit trees pop-out.
 9. Click the Add button, there will be a warning in the console window

about changing the material, for our purposes, we can ignore this
warning.

 10. Change Brush Size and Tree Density as needed. We are using a size
of 20 and a density of 15.

 11. Paint some bushes onto our terrain.

We now have some bushes within our scene. If we don’t want the player to
be able to pass through the bushes, then we just need to add a Box Collider
component to the Bush 04 prefab asset and use the Refresh button within
the Place Tree tool, give this a go and see how it works for you. We can
continue to add trees, grass, and rocks to our scene (in fact Nobiax/Yughues
has a very nice free rock pack available in the Asset Store) until we have the
environment looking as we would like it to using the same techniques that
we have outlined within this section. However, always remember that the
more trees you add the more shadows must be calculated. Also, the more
grass you add the more the system must consider the sway of the grass, try
making a very thick area of grass and a sparse area and see if your system has
any performance issues between them. With our basic terrain in place, we are
now ready to bring the buildings onto Barataria.

7.5 Adding Imported Assets

Download
Get the Arteria3D Medieval Farm Pack from the companion
website in this chapter’s section of the resources. The �le name is:
“Arteria3DMedFarm_generic.zip.”

Before we add our imported assets into our new scene, we need to get the
assets imported into our project. After downloading the zip �le from the
companion website, unzip it into a directory of your choice and we will begin
the process of bringing these assets into our project and then into�the new
environment that we are creating. This process is very similar to the one
that we followed for importing our character assets a couple of chapters
back, though this time we will also do some work on importing the textures
and putting the materials together for the assets as they come�in. Before

301

Environment

beginning, make sure to download the �le and to get it unzipped on�your
computer. After unzipping it you will �nd four folders within as noted�in
Table�7.5.

 1. In the Project pane create a new folder for storing these assets. We
have selected “Arteria Farm” as our folder name.

 2. In the Model Formats folder select the MedievalFarmLayout(2010).
fbx �le and drag it into the Arteria Farm folder in the project to
import it.

 3. Select the MedievalFarmLayout(2010) mesh in the Arteria Farm folder
and place it into the scene.

 a. Rotate it and move it as necessary to get it to �t onto the
Southwestern portion of the island somewhere (see Figure 7.35).
Do not worry about tress or what not, they can be removed later if
needed.

 b. Move Sancho closer to the town.

We have now placed a major asset into our game world. Steve Finney at
Arteria3D has provided a one mesh asset that contains a small farm town for
us to use. This will save time from having to manually place assets and will
also help with getting the scaling right and consistent. There are two distinct
approaches to constructing environments for a game. The �rst is a modular
approach in which the modelers construct little sections of buildings
that can then be put together in any fashion that we want. This is very
useful for many di�erent types of game projects in that it will essentially
limit the number of assets that need to be created. Consider, rather than
creating nine distinct houses, we could create three wall sections, three
door sections, and three window sections, these could now be combined
to create far more than just the original nine unique houses that had been
made. The other approach is to create the town or environment entirely
within the 3D modeling application and to import it as one chunk for
the game. This is easier for the level designers as we then just drop these

302

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 7.5 Folder Structure of the Arteria3dMedFarm_generic.zip �le

Folder Contents

Model formats All of the meshes that we will be importing.

Normal maps Normal map textures, these are used to provide the illusion of depth
and bumpiness on meshes.

Terrain textures Some extra terrain textures that could be imported and utilized
within the terrain texture painting if desired.

Textures Di�use texture maps for the meshes, these provide the default
appearance of the object under regular lighting.

complete chunks into our worlds; however, this does have other drawbacks,
such as di�culty with camera culling if we need to do such things. For our
project at hand, we will do just �ne with the main town already created and
then manually placing a few details here and there.

With the town in place we will take Sancho and run into the town to
take a look at how this looks and feels, specifically in relation to sizing.
Figure�7.36 depicts Sancho as he has come up to a nice wagon that would
serve good for sizing purposes. Based on this, it looks as though Sancho
and the town are sized very well with respect to each other. All we need
to do is to finish putting the town together, take a look at some of those
trees and grass popping up inside of there and maybe Barataria will be
ready to come to life.

 1. Create a new folder inside of the Arteria Farm folder named Textures.
 2. In the Textures folder from the zip �le select all of the �les and drag them

into the newly created Textures folder in our project to import them.
 3. Repeat for the contents of the NormalMaps folder.
 4. In the Textures folder of the Arteria Farm folder (in the Project pane),

select all of the textures that end with _NRM (these are the normal
maps and we need to adjust something on them).

303

Environment

FIG 7.35 Initial placement of the town asset from Arteria3D.

 a. In the Inspector panel change the Texture Type from Texture to
Normal Map.

 b. Uncheck the Create from Grayscale check box.
 c. Click Apply.

 5. Open the Materials folder inside of Arteria Farm.
 6. Select the MFVThatchedA material.
 a. Change the Shader from Standard to Legacy Shaders �

Bumped—Di�use.
 b. Drag the MFVThatchedA texture from the Textures folder into the

Base (RGB) Texture slot and the MFVThatchedA_NRM texture to
the Normalmap slot, see Figure 7.37.

 c. Notice that the name of the material matched the name of the
texture we needed.

 7. Repeat for the rest of the materials.

We intentionally selected one of the o� the wall materials as our example
to make sure that it contained both a normal and di�use map, not all of the
materials will have a normal map texture for it in which case just leave the
normal map slot blank or select Legacy Shaders � Di�use. The Standard
shader that we switched from is the new physically based rendering
system in Unity 5. While it is possible for us to have used these textures
within that shader system, the textures were not speci�cally designed for
physically based rendering. There is a slight di�erence in how the di�use
texture and the albedo textures are created. Rather than risk getting odd
shader behavior out of our materials we just switched the materials to the

304

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.36 Sizing test of Sancho inside of the town.

legacy material system which will work very well for our project at hand
as we are not trying to create overly realistic surfaces and materials. We
have opted not to focus on the creation of materials here as that process
relies on knowledge of texture creation as well, but for those interested,
there is a more detailed discussion of the new Standard Shader in Unity’s
documentation found at: http://docs.unity3d.com/Manual/shader-
StandardShader.html.

The other change of note is with the MFVThatchedBTrnsparent material
set the Shader to be Legacy Shaders � Transparent � Bumped – Di�use.
After correcting all of the materials, we should be able to take Sancho
back by the same wagon from the sizing test and have something similar
to Figure�7.38 which will enable us to really get a feel for the graphical
continuity and make sure quality levels are consistent. This is starting to

305

Environment

FIG 7.37 Applying the di�use and normal maps to the proper material channels.

look pretty good. The �nal thing that we need to do is to add a collider to
this to stop Sancho from running through it. In this particular case our best
bet is going to be to add a Mesh Collider component to the asset (actually it
will be our quickest bet, not the best one), though the mesh collider should
generally be the choice of last resort. We cannot add the Mesh Collider
to the main asset, however, as it has no mesh in it. We need to open the
MedievalFarmLayout(2010) object and select all of the objects within it and
add the Mesh Collider to them.

Note
Rather than using a Mesh Collider as we did, a better option would be
to add Cube Game Objects to the scene and position them around
the various building structures within the game world. Once we have
positioned around the wagon, for instance, we would make it a child
object of the town and also turn of the Mesh Renderer component so
that it is not visible. This would be the best approach to creating the
colliders for this town. For a video demonstration of this take a look at
the video found on the companion website: “Town Colliders.”

To add any other assets into our scene, follow the same steps that we took in
getting the main village in place. Arteria3D have provided some nice assets
that we can bring in and throw around our scene in various places for some
nice set decorations. Although, it looks like we may need some bridges at
some point in order to get across those rivers, but we will cross that when we
come to it. Actually, you will cross it in the exercises.

306

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.38 Sancho back in the town with the textures applied.

7.6 Lighting the Environment
Lighting an outdoor environment is much easier than lighting an interior
one. Usually an external environment is lit by one prominent light source,
the sun. Although if we were to construct a night scene then we would
be faced with some di�erent challenges. Lighting is an art form and
something that you have to be willing to be patient with to get just right.
We will provide an overview of the lighting system provided by Unity in
this section, by looking at the four di�erent light objects that are provided.

The four light types are defined as follows: direction, point, spot, and
area lights. The properties that they each have are listed in Table 7.6. An
area�light is a rectangular plane that defines where the light is coming
from and the light is cast only from within that rectangular area. The light
is cast perpendicular to the plane in the direction specified. Spot lights
are similar to flashlights or search lights in that they represent a cone of
light starting at one source and being cast out into the world. Point lights
are like a light bulb. The light provides the source of illumination and
all light is cast in a complete sphere around the source and emanating
outward. Directional lights are intended to mimic light sources such
as�the sun. They provide an infinite plane that the light is cast from and
the light travels in the direction specified by the angle of the source
(Figure 7.39).

With the �xed camera setting that we are employing and the selection of
a daytime environment there is not much to add as far as lighting goes for
our current world. Although, as a simple experiment, compare the feeling
of the world as it currently is to one with the following changes made to the
properties of the directional light, Figure 7.39 depicts the default property
values for this object:

• Set the color to a cool blue (RGB: 103, 184, 251)
• Drop the intensity to 0.55
• Drop the bounce intensity to 0.4

Our world has now become not a night world per se, because of the
white glow along the horizon, but it de�nitely has become a dusky world.
A�world in which the sun has just recently set and the �re�ies should be just
beginning to emerge.

7.7 Boundaries
With our environment nearly complete, we are just left with the addition of
any boundaries to our world to make sure that the player stays exactly where
we want them too. For this, we are going to create some Game Objects and

307

Environment

308

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 7.6 Common Properties of Light Objects within Unity

Property Use Which Lights

Type Which of the four types of light it is, can change here
rather than adding a new light and deleting.

All

Width Width of rectangular area de�ning the light source. Area

Height Height of rectangular area de�ning the source of the
light.

Area

Baking Select between baking the light to a lightmap (very fast
game performance) or using entirely real-time lighting
(slow) or a combination of the two.

Directional, Point,
Spot

Range Maximum distance the light will cast. Spot, Point

Spot Angle How wide of an angle the spot light covers. Spot

Color What color the light is. This gives the light a hue, think of
cool blues for nighttime or warm oranges for a lazy
afternoon.

All

Intensity The brightness of the light. All

Bounce
Intensity

The real world is lit by light bouncing o� of various
objects; this property de�nes how bright the light will
be when bouncing. Above 1 and the light bounces
brighter than when it hit, less than 1 and it will be
dimmer.

All

Shadow Type Determines which type of shadows will be used. Hard
and soft shadows are di�erentiated by whether the
edge of the shadow is sharply de�ned (hard) or is fuzzy
(soft).

All

Strength Will specify how dark the shadows will be. All

Resolution Sets the resolution of the shadow map, higher resolution
will be higher-quality shadows.

All

Bias Adds a distance to the shadow map so that parts that are
on the shadow border will get the proper lighting.

All

Normal Bias Same as bias but for insetting shadows along a normal
map.

All

Cookie A texture that de�nes a shadowed region within the cast
light, very useful for creating the illusion of a light being
cast from within a lantern, for instance.

Directional, Point,
Spot

Draw Halo Can draw a halo around the light source, can be a very
nice e�ect.

All

Flare A �are that can be rendered at the location of the light,
like a lens �are.

All

Render Mode How important this light is to be rendered, the default
option will work for most lights.

All

Culling Mask Use this to select objects that will not be impacted by this
particular light.

All

place them at the edge of our terrain to keep the player from being able to
run o� the terrain and fall into the nether land beyond.

 1. Hide the Water object so that we can more clearly see the terrain.
 2. Add a new Cube Game Object to the world.
 3. Position the new Cube toward one of the sides of the terrain.
 4. Rescale the Cube so that it is big enough to be a wall on one

side�of�the terrain, something like 1, 50, 260. See Figure 7.40 as an
example.

 5. Make sure the wall is even or slightly overlapping with the edge of the
terrain.

 6. Disable the Mesh Renderer component of the cube.
 7. Copy the Cube to the other side and the top and bottom of the

terrain.
 8. Create an Empty Game Object and name it Boundary or something.
 9. Make the four cubes child objects of this new Boundary object.

What we now have is such that the player cannot escape from our
terrain. In�the next chapter, we will want to add some more details to this
system�but�for the moment, all we need to do is to make sure that we are
able�to�control where the player can and sometimes more importantly
cannot go.

309

Environment

FIG 7.39 The properties of a Directional light.

7.8 Summary
Throughout this chapter we have constructed an outdoor environment
for our game characters to perform within. Outdoor environments involve
more work as far as a terrain is concerned than do indoor environments.
However, getting the lighting just right with an indoor environment can be
a very challenging process, not to mention getting all of the assets placed
inside of the building or dungeon or whatever. When building games, there
will be times that you will need both interior and exterior environments
for your story. The skills that we have learned in constructing the isle of
Barataria can be applied to the construction of a cave system going into
the mountains of the island if we were to include such a level within our
game, though we would require models and textures for the cave object
much like the town itself. Interior scenes will require that all of the assets
be constructed externally of Unity, whereas we can use the terrain tools
directly within the engine to construct much of the level when building
an outdoor world. Before rushing o� to bring custom content into the
terrain tools within Unity, take the time to get a good feel for the tools with
the default assets that have been provided. Environments are vital to the
games that we make and play; these are portions of the project that take
some practice and time to get just right. Sancho can now run around the
island that has been given to him and explore it; our game project is now

310

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 7.40 A retaining wall on one side of the terrain.

ready to have some mechanics and game-play elements added to it and
really start coming together.

Download
You can �nd the �nished scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter7_part2.”

Vocabulary
Terrain
Unity unit
Terrain collider
Normal map
Di�use map
Standard shader
Physically based shader
Legacy shader
Tileable texture
Opacity
Mass place trees
Place trees tool
Raise/lower terrain tool
Smooth height tool
Paint height tool
Paint terrain tool
Paint details tool
Billboard
Directional light
Point light
Spot light
Area light

Review Quiz
 1. What is the di�erence between a natural and arti�cial boundary within a

game level?
 2. How can trees be removed from a terrain after they have been painted on?
 3. How can a terrain be lowered after it has been raised?
 4. Why is the Paint Details tool not a good choice when adding large rocks

to the scene?
 5. What is the use of the Refresh button within the Place Trees tool?
 6. Why is it important to place a few things near a character before detailing

the whole environment?
 7. What are some of the factors that can impact the running performance of

a game?

311

Environment

Exercises
 1. Clean up the interior of the town by removing any trees or bushes that are

coming through buildings or in other ways causing problems.
 2. Import the other models provided by Arteria3D and place them within

the environment.
 3. In the Asset Store �nd the Simple Wooden Bridge by VR and add it to the

environment so that Sancho can get across those rivers.
 4. Raise the terrain on the Southeastern portion of the island and place

Conifer trees with some bushes and other details to set that region apart
from the rest of the island.

Design Document
In this addition to the Sancho Panza design document, we have incorporated
our design elements for the environment of the isle of Barataria. These
details have included rough reference sketches of the environment to create
as well as a list of assets or items that we would like to include within the
environment. Finally, we have also added a breakdown of the environment
and how it should pertain to the story that has been developed previously.

Download
Updated version of the Sancho Panza design document can be
downloaded from the companion website: “DesignDocument_chapter7.”

Consider your design document that you have been working on thus far, and
add the following to it:

 1. Consider the primary environment needed for your story:
 a. What does the story need from this environment?
 b. What will the game need from the environment?
 c. How will you be able to give the player what they need and control

the player at the same time?
 d. Develop a sketch of this environment.
 e. Develop detail sketches of key areas of the environment.
 f. Break the environment up into regions that can be used as levels.
 g. Develop a list of assets that will be needed for this environment.

312

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

CHAPTER 8

Mechanics

The mechanics are the engine of the games that we play. The mechanics are
formed by the rules and the expectations of the games and govern how we
play as well as what we can do within a game. Without game-play mechanics,
we really do not have a game. Even something as simple as moving a
character around an environment is a mechanic as there are rules governing
how the character can move and what the player must do to make the
character move. In this chapter, we will look at what these mechanics are and
how we can �gure out which mechanics our game might need. After getting
a basic understanding of these game mechanics and where they come from,
we will look into designing and implementing a couple of them for our
ongoing Sancho Panza project.

• What Are Game Mechanics?
• How Do We Know What Mechanics We Want?
• Designing a Life System
• Designing a Collection System
• Implementing the Life System
• Implementing the Collection System

313

8.1 What Are Game Mechanics?
Game mechanics are where the game play truly comes from. These are the
rules that govern how things inside of the game work. More than this, they
also govern what the player can and cannot do as well as what the game
can and cannot do to the player. We will break these mechanics down into
four di�erent categories as we look at what they are and provide examples
of each. There is much debate within game development circles as to how
we should classify game mechanics and what should or should not be
considered to be a game mechanic. We are going to take the approach that
any rule that is within a game is a game mechanic and will divide these into
categories so that we are able to recognize which mechanics are absolutely
vital to the game and which ones are only needed for this version of the
game. Or to put it in another way, there are rules that if we did not use in
the game, then the game would not be the same game. And then there
are rules that we could modify or even remove altogether and still have
essentially the same game. The mechanics that we will look fall into one of
the following categories:

• Core Mechanics
• Victory and Loss Conditions
• Balance Mechanics
• Story Mechanics
• System Mechanics

8.1.1 The Core Mechanics

Every game has a set of internal rules that de�ne how the game must
be played and these are the core mechanics of the game. These core
mechanics form the fundamental rules that a player must know and
understand in order to be able to play the game. For instance, in a game
of hide and seek, the mechanics are such that one person is “it” and they
have the task of trying to �nd and tag the other players that will be hiding
somewhere within a de�ned game area. We can further enhance this
rule set by saying that the person who is “it” must close their eyes and
count to 100 prior to beginning the search for the hidden players. These,
in a nutshell, form the core mechanics of that particular game system.
Another example of core mechanics can be seen within the work that we
have already done on our Sancho Panza project. Sancho can move around
within the game world that has been created and he can �ght with spiders
when he encounters them. Those form the rules governing how Sancho
can interact with the world that is around him, or what he can and cannot
do with the game thus far. Generally speaking, core mechanics are not
complex or di�cult to explain, the fuzziness of the rules of various games
comes from the other categories of game mechanics, and Table 8.1 lists
some examples of core mechanics.

314

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

8.1.2 Victory and Loss Condit ions

Most games must have a winner and a loser; however, that may actually be
de�ned. Regardless of how many players are involved in a game, the game
ends with a de�nitive winner and loser. There are exceptions to this concept,
however, as not all games have an endgame to them, they can be played for
as long as the player wants to play them; The Sims franchise is an example
of a game series with no de�nitive end to it. Although, one could argue that
there are individual victory conditions scattered throughout the game such as
getting promotions and that the player creates their own victory conditions
while playing the game such as buying the big mansion house. So, even though
the game may not explicitly create the victory conditions, there are victory
conditions nonetheless as the players will create them. We can have a victory
condition in which only one player wins and all of the others lose, this is referred
to as a zero-sum game, or we can have victory conditions in which there are
varying levels of winning and losing, a non-zero-sum game and the work of
John Nash within economic theory. In either case, there are rules that de�ne
when a player has or has not won the game. These rules are the mechanics of
the victory and loss conditions. In the case of Sancho, the loss condition is when
the player has died and has no more Sancho lives left, and the victory condition
is encountered when the player has removed Sanson from the isle of Barataria.
Victory conditions within games can be categorized as presented in Table 8.2.

315

Mechanics

TABLE 8.1 Examples of Core Mechanics

Mechanic Use Example

Shoot or be shot The player must shoot and destroy the bad guys while
trying not to be shot and destroyed by the bad guys.

Any �rst-person shooter
game

Matching Player must �nd matches, usually in a group either
horizontally, vertically, or diagonally, of similar shapes
and/or colors.

Bejeweled

PvP Player competes against other human players directly
in a zero-sum game.

Capture the �ag or
death matches

Co-Op Multiple players work together to complete a task that
cannot be completed by a single player on their own.

Raids in MMOs and
many Facebook games

Exploration The player must explore the game world they are
presented with in order to discover items.

Shape of the World

Combos The player can achieve higher scores and more
powerful actions through the combination of actions
in speci�c sequences.

Smash Bros.

Time limits Each stage of the game must be completed within a
certain time span otherwise the player will have to
start over or at least restart from a speci�ed point.

Sonic the Hedgehog

Achievements Player must complete actions or collections in order to
accomplish goals and victory conditions within a game.

Animal Crossing

Building The player spends the game constructing various
buildings or objects within the game.

Minecraft

8.1.3 Balance Mechanics

Games that are unbalanced are not fun to play. Therefore, as we design our
games, we need to consider mechanics and mechanisms to keep the game
play balanced and fun for everyone that is playing it, especially if we are
looking at a multiplayer game. But, even in a single player game, if the game
is too easy to play then it is not quite as much fun as it could be. The type
of balance mechanic needed, if any, will depend entirely upon the game
itself, but a classic example of a balancing mechanic is the blue shell from
the Mario Kart series. The whole purpose of that one item is to slow down
the player that is in the lead and allows the other players a chance to catch
up; it maintains the level of challenge for all players and keeps the game
interesting. This is generally referred to as a catch-up mechanic as it allows
other players to catch up within the game. Balance mechanics are the fuzziest
of the game mechanics as players do not initially understand why these
rules are in place, and designers do not always realize the need for them
until playtesting the game down the road. At �rst glance, the rules seem
arbitrary and aimed at punishing certain types of game play, but after playing
the game many players begin to realize the signi�cance of these balancing
mechanics, �rst as new players that need the extra help within the game and
then later as expert players that need a little more challenge to the game.

8.1.4 Story Mechanics

We have already mentioned that not all games have or even need a story as
a component of the game. But for those that do contain a story, there are
rules and mechanics that we add to the game that are directly derived from
the needs of the story. An example of a story mechanic would be the rules
that govern dialogue trees within the game. Remember, everything that
occurs within a game is a result of scripted behavior and therefore the result
of a rule set. In this case, the rule is that when the player gets close enough
to character X a conversation begins and the player can select from a given
set of responses depending on previous responses. While at �rst glance this

316

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 8.2 Di�erent Types of Victory Conditions

Mechanic Use Example

Points During game play, players are able to earn points for various actions,
and at the end of game play, the player with the most points wins.

Sports games

Acquisition Gathering resources or territory is the point of the game and at the
end of the game the one with the most wins.

Risk

Race Players compete to see who can get to a certain location within the
game �rst. The �rst one at the location is the winner.

Mario Kart

Conquest The point of the game is to eliminate all of the other player’s playing
pieces, thereby being the only player with any pieces left in the game.

Checkers

Riddles Players must try to solve a riddle or puzzle in order to determine the
solution to the game, and once the solution has been found they
have won the game.

Mastermind

may seem to be a very weak mechanic within a game, there have been many
games developed in which the process of talking to other characters was
vital to advancing the game and eventually winning the game; L.A. Noir is an
example of one such game. Any emotional relationships and the rules that
govern how those work and impact game play are also mechanics based
upon the needs of the story and the story within the game. Other examples
of mechanics derived from the story of the game include the victory
condition itself, which is a direct result of the resolution to the primary
con�ict of the story; the game is about how the player goes about getting to
that point and winning.

8.1.5 System Mechanics

System mechanics govern how the player interacts with the system and how
the system interacts with the player. This may not seem to be very important
at �rst glance, but designing a control system for a keyboard is di�erent
than one for a game controller which in turn is di�erent than one for the
Kinect device. For instance, if the Sancho game were played with a controller
plugged into the computer, we would be able to sneak Sancho around by
lightly pressing on the thumb stick. However, there is no way to lightly press
a key on the keyboard; therefore, if we wanted the player to be able to sneak
while using the keyboard, we would have to introduce another key that was
used speci�cally for sneaking around. These mechanics must be considered
as we design the interface systems for the game. The way the screen looks on
a traditional monitor is very di�erent from the way the screen looks within
the Oculus Rift Virtual Reality (VR) headset. In fact, the di�erence is such that
it is important to limit the amount of text used with VR headsets as it is more
di�cult to read the text (with the current technology). These mechanics need
to be considered when developing a game; in fact this was mentioned much
earlier when we discussed target platforms during our initial exploration of
the design document for a game.

8.2 Where Do Mechanics Come From?
The ideas for the mechanics of our games come from several places. The �rst,
and probably the most common, is from the game genre itself. For instance,
in the case of the Sancho Panza project, it was decided early on that the
game would be a platformer game with some action–adventure elements. As
a result of that genre decision, there are certain things that the game has to
have in order to �t into that genre; there are speci�c game-play components
that we must allow for. These components, as we looked at earlier in this
book, would consist of the ability of the player to control a character, how
that character moves within the game world is a set of rules. It would also be
necessary for us to allow the player to solve challenges either through �nding
and collecting items or through combat, both of which are further de�ned by
rules that comprise the mechanics of those systems. As can be seen, we have
already constructed some game mechanics for our game when we created
the character controller systems and the rudimentary combat system.

317

Mechanics

We also get ideas for mechanics from playing other games. As we play
other games, we like the way that a game does something, or perhaps
dislike a certain game’s approach, and as a result of this experience we
try to incorporate similar systems into our own designs. Copyright law
is a somewhat behind the times as far as digital media and video games
are concerned, but as a general rule it is not possible to copyright a
game mechanic. This basically says that I could not copyright the game
mechanic of allowing my player character to destroy monsters in the game
by jumping onto them. What I can copyright and therefore protect is the
character itself: what it looks like, how it sounds, and to an extent how it
moves. But the rule of being able to jump on your opponents to kill them
cannot be copyright protected. After all if it could, then we would not have
the many di�erent types of �rst-person shooters or even the matching
games that we play online. As you play other games, pay attention to the
things that you like and do not like. But, it is important to be able to qualify
why a certain mechanic was enjoyed or not. Perhaps you can get some
good ideas from being aware of what it is that you do and do not like in
the games that you play.

Another method of developing mechanics for our games is through
playtesting and trying to get the game balanced to be an enjoyable
experience. This is where we get our balancing mechanics from as a general
rule as these are things added into the game after we discover that the game
does not work quite the way that we thought it should, or that players do
not play the game exactly the way we wanted them too. The best way to
demonstrate this will be through a quick story. During the summers, we
provide a 2-day game development camp for middle school students. In
this camp, the kids are taught how to create a 2D arcade space shooter kind
of game with a �ying spaceship and some asteroids and aliens to challenge
the player. The kids all want to make the spaceship shoot lasers. Once this is
done, the kids thoroughly enjoy creating a glowing wall of laser death, that
is to say holding down the space bar and constantly shooting lasers to form
a complete wall (see Figure 8.1). However, they become very bored with
this game because there is zero challenge to them as players. This is game
balance, an unbalanced game seems like it would be wonderfully fun to
play at �rst, but we quickly realize that what truly makes a game fun is the
challenge of beating it and knowing that we beat that challenge where other
players have failed.

8.3 Designing Our Mechanics
We are going to create a couple of example mechanics for our Sancho game
including a checkpoint system which will comprise of the ability to respawn
the player when they die, killing o� the player when they get into water, and
�nally allowing the player to collect objects within the game world to ful�ll
speci�ed quests. We have already implemented some game mechanics
within our project as well; for instance, Sancho has a health system that we

318

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

added with the arti�cial intelligence (AI) NPCs, Sancho can run and move
around the world based on the player’s input, and Sancho can talk to his
wife Teresa, although we will be returning to that one and tweaking it quite
heavily as soon as we get to the UI system inside of Unity. The key to creating
mechanics, as with everything else we have done thus far, is in the design
phase. Through designing the rule system that we are going to implement,
we are forced to understand the mechanic. Without this deep understanding
of how and when it should work, it is extremely di�cult to actually
implement the mechanic into our game.

8.3.1 The Checkpoint System

This is a game mechanic that is derived directly from the genre of game
that we are creating. As players play through action–adventure games
or even platformers, they expect to have their progress automatically
saved so that if they die they can return to that save point rather than
all the way to the beginning of the level. These are referred to as
checkpoints. We are going to create two checkpoints in our example.
The�first checkpoint, we will position within the town near Sancho’s initial
conversation with Teresa. The second checkpoint, we will position on the
bridge leading over into the Act II region of the game environment. This
way if the player�dies while exploring the thick forest over there, they will
respawn on the bridge as opposed to all the way back in the town itself.
We have�all played games with checkpoint systems and have an idea of
how�they work, but just to make sure, we are going to step through this

319

Mechanics

FIG 8.1 The wall of laser death in an arcade shooter.

design process to guarantee that we know what to do and also that we
have what we will need.

• When the player comes in contact with a checkpoint:
• Save the checkpoint so the game knows.
• Get rid of the checkpoint so it cannot be activated again.

This seems to be a fairly straightforward approach to our checkpoint system.
The state machine for it, as seen in Figure 8.2, will sit and wait for the collision
to occur as speci�ed in our list given previously. Once this collision occurs,
we will save the location of the checkpoint that we collided with and then
destroy it. Getting rid of the checkpoint is a subtle but important point. We
do not want the player to have activated the third checkpoint, for instance,
and then while running around to accidently reactivate the �rst checkpoint.
This would cause the player to respawn back at the initial starting point
rather than at the �nal checkpoint that they had gotten to.

8.3.2 Respawning Sancho

Similar to the previous example, respawning the player’s character is an
expected mechanic within the action–adventure genre. Players expect to
not have to run through the whole game with only one life. It is expected
that the player will die at least once during the playing of the game
and that after the character dies, the player should have their character
respawned so that they can continue playing. Ideally, the respawning of the
character would occur at the most recently discovered checkpoint as was
mentioned in the last section. We will skip the state machine list this time,
instead we will simply state that whenever the player dies, for whatever the
reason, the character will respawn back at the last saved checkpoint. There
are two di�erent approaches that we could take to this problem. The �rst
would be to destroy the character when the player dies and then to create
a new instance of the character object at whatever point in the game world
we want. This seems like a viable option and it can be done, however, in
order to do it we will need to have a game controller system or some other
system in place that will be responsible for destroying and creating the
player objects as well as keeping track of how many lives the player has
remaining, among other things.

320

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Collision with checkpoint

FINISHED

Save location of checkpoint
Disable checkpoint

Idle

FIG 8.2 The state machine layout for the checkpoint system.

An easier approach would be to simply move the current player after their
death animation has completed and perhaps a reasonable amount of time
has passed. We would also want to take into account whether the player has
any Sancho lives remaining or not prior to respawning the player. If the player
does not have any lives remaining, then the game should end, otherwise it
will be OK for Sancho to respawn back at the last saved checkpoint. At any
rate, those are implementation issues to worry about when we get there,
although by considering these while we are designing the system, it will
give us a solid running start at the implementation of this process as soon
as we get to it. Figure 8.3 depicts the state machine that will be responsible
for repositioning the player back at the spawn point. In this case, we will not
destroy and recreate but will go ahead and move the character to where the
last activated checkpoint is located at.

8.3.3 Sancho and Water

This example is derived from the needs of the story. The story, and as a
result the game itself, needs the player to stay within the con�nes of the
game world that we have created. In the last chapter, we created boundaries
around the island in order to keep the player from falling o� of the terrain
and that addressed our needs at the time. Although, one of the other issues
we addressed in that chapter was that the environment needs to direct the
player through the world in the manner that the designer wants the player to
go through the level. Keeping this in mind, what we are going to do is to kill
the character when the player wanders out into the deeper part of the ocean
under the pretext that Sancho cannot swim. Likewise, we do not want the
player to bypass our bridges by running over the river so we will incorporate
the same Sancho cannot swim rationale into interactions with the river. This
still leaves one possibility open: the player can stay in the shallow part of
the ocean and run around the mouth of the rivers into the other areas of the
map. To counter this, we will employ another collider and this time blame
the death of Sancho on the rapid current of the river pushing him out to sea
where he still cannot swim. We could actually extend this one so that instead
of a collider, we create a physics force that pushes the character out to the

321

Mechanics

FINISHED

Game over

Check lives
are remaining lives greater than 0?

Dead
play death animation

Respawn
Sancho position = Last checkpoint position

Yes No

FIG 8.3 The respawn player state machine design.

deeper part of the ocean surrounding the island. With these basic ideas in
mind, we can break this apart into a less cluttered state machine list.

• When the player collides with the deep part of the ocean:
• Kill the player character.
• Respawn the player character.

• When the player collides with the rivers around the bridges:
• Kill the player character.
• Respawn the player character.

• When the player collides with the mouth of the rivers in the ocean:
• Kill the player character.
• Respawn the player character.

Notice that throughout these, the player can be killed and respawned, but
we have not addressed how many lives the player gets to have other than
to mention that it was an issue to be concerned with during the respawning
state machine. Granted that the design for respawning Sancho does indicate
the checking for remaining lives, but it was not our goal at that time to design
the complete life management system, this is being saved for an exercise
at the end of the chapter. This detailed list of the state machine allows us to
derive the state machine depicted in Figure 8.4. An interesting note is that
we could have done it with only one state to handle all three of the di�erent
types of collisions possible (see Figure 8.5 as an example). Let’s take a
moment to look at these two di�erent approaches more closely.

In the example of the �rst design (Figure 8.4), the system is entirely self-
contained. So, the system takes care of detecting a collision and determines what
to do as a result of the collision. We could continue to expand on this design to
incorporate other no-no places that we do not want the player to go simply by

322

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Collision river mouth

Collision deep ocean

Collision river
River message
Kill Sancho
Respawn Sancho

River current message
Kill Sancho
Respawn Sancho

Deep ocean message
Kill Sancho
Respawn Sancho

Idle

FIG 8.4 The state machine controlling collisions between Sancho and the water.

adding more collision detections, more transitions, and more target states. The
second example, found in Figure 8.5, does not actually know what was hit; all it
knows is that it has been triggered to do something. The warning message to be
displayed to the player is a variable that is set by whatever state machine actually
detected the collision. The advantage here is that this is much smaller and easier
to maintain, at least within this view. However, in order for this system to work,
we would have to move the actual collision detection o� to other parts of the
state machines within the player controller system thereby making the whole
system more di�cult to fully understand and build upon. By dividing them out as
we have in Figure 8.4, we can utilize di�erent audio or UI events when the player
collides with the water death objects. To do this with Figure 8.5, we will need to
have the various objects that we collide with setting variables that will determine
which audio and which UI elements to display; it will just be easier for us to keep
everything in one consolidated state machine and run the logic through as we
have in Figure 8.4.

8.3.4 Sancho’s Collection System

Our �nal example is going to be the ability of Sancho to collect various things
within the game. We are going to start with having him collect sheep so that
they can be delivered to the pen inside of the town. But this system could be
abstracted out to allow us to use it for other animals within the game as well.
This can then serve as the foundation for an inventory collection system in
which the player can run around and gather other items to bring back to the
town. The animals can follow Sancho around, but the other things will need
to be put into his inventory, perhaps using Dapple as a pack donkey, to return
them to the town. Our basic approach to this can be seen in the following list:

• Set the number of items he needs to �nd, if necessary.
• When Sancho collides with a sheep and still needs to �nd sheep:

• Check to see if he has already gathered that sheep:
– If he has then ignore the collision.
– If he has not then:

– Add the sheep to the collection of found sheep.
– Set the sheep to follow Sancho around the world.
– Add one to the number that he has found.

323

Mechanics

Idle

Collision river

Collision river mouth

Collision deep ocean

Water death message
Kill Sancho
Respawn Sancho

FIG 8.5 A simpli�ed two-state version of the water collision system.

By introducing the maximum number of sheep that Sancho will be required
to �nd, we are creating a victory condition for the player, that is, the player
knows when they have completed that speci�c quest. We do not want the
player wandering aimlessly around wondering if there are still more sheep
to be found. This will also allow us to put more sheep than necessary into
the game world to make it easier for the player to �nd the sheep. This is
going to be important if we allow the sheep to wander around and possibly
get themselves stuck in some part of the game map. We are going to have
the found sheep follow Sancho around the game world rather than just
have them disappear in a beeping noise with the counter of found sheep
increasing by one. This will give the illusion of Sancho gathering and
herding the sheep into the town, which would be for a more interesting
game-play experience. If we are going to allow the sheep to follow Sancho
around, then we will to have to incorporate a method for Sancho to get rid
of those sheep.

• When Sancho enters into the sheep pen or collides with gate:
• Any sheep that are with him will stay behind in the pen and stop

following him.

We now have a basic guideline for both the collecting and the
delivering�stages of this system. Building the state machines
themselves�will result in systems that are shown in Figure 8.6. Notice

324

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Init
Set number of sheep to find

FINISHED

Idle

Check sheep
Have we caught all of the sheep?

Yes

Yes Leave sheep

Grab sheep

Make sheep stop following
Put sheep in pen

Get sheep
Have we already caught the sheep?

FINISHED

Collision with pen

NoCollision with sheep

No

Add 1 to number of found sheep
Make sheep follow Sancho

FIG 8.6 The state machine for collecting and delivering sheep.

that in�this design we have incorporated both of our descriptions for a
collection system into one state machine to make it easier to maintain
and debug this system.�This could be modi�ed later by creating the item
that we are looking for as a variable and then setting this state machine to
trigger on�that variable, but that is an implementation concept that we are
coming�to.

8.4 Implementing Our Mechanics
After completing the design work on the systems that we are going to add
to our project, we will have a good understanding of how these systems
work and where we need to add them into the developing game. Looking
through the designs that we have constructed, most of the procedures
resemble the ones that we have already used in other state machines that
should make the implementation easier to complete. One of the things
that gets overlooked when learning programming is that we continue
to use the same methods as the core building blocks on more complex
functionalities that we want to add. Before we go o� looking for a new
action that will do everything we want in one go, we need to look carefully
at our design work and see how the pieces �t together, especially if we can
reuse skills that we already understand and just put them together slightly
di�erently.

Download
You can �nd the starting scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter8_part1.”

8.4.1 The Checkpoint System

For the checkpoint system, before we construct the logic of it, we
will have to build something to serve as a visible marker for the
checkpoint�itself. This can be any kind of object that is sitting in the
world�and in some way drawing attention to itself so that the player
notices it. For our version, we are going to make a rotating quad that
will have an image of Sancho on it. In order to construct this, be sure
to grab the checkpoint texture file from the companion website. Once
we have that image downloaded, we will review some of the work from
the last chapter by creating a new material to use and then construct
the quad shape we will use for the checkpoint and get it rotating in our
game�world.

Download
Get the “checkpoint.tga” �le from this chapter’s section of the resources
on the companion website.

325

Mechanics

 1. Import the checkpoint.tga �le into your project, the Materials folder
would be a good location.

 2. Create a new material by left-clicking on the Create drop down
(directly beneath the word Project in the Project pane) and selecting
Material from the drop-down menu.

 3. Name the new material checkpoint_mat.
 4. For the Shader of the Material, click Standard and select Legacy

Shaders � Transparent � Cutout � Di�use from the drop-down
menu.

 5. Drag the checkpoint.tga �le from the Project pane and onto the
Di�use texture location inside of this new material.

 6. Add a quad to the current scene: GameObject � 3D Object � Quad.
 7. Change the name of the quad to be checkpoint.
 8. Add the checkpoint_mat material to the quad by dragging it onto

the quad from the Project pane.
 9. Position and scale the checkpoint object so that it �ts nicely into the

initial entrance into the town on the island (see Figure 8.7).
 10. Remove the default Mesh collider on the Quad.
 11. Add a Sphere (or Box) collider to the quad).
 12. This is the original 10 and then numbering of steps continues from here.
 13. Create a duplicate of the checkpoint object by selecting it in the

Hierarchy panel and pressing CTRL-D.
 14. Rotate the new checkpoint object 180° on the Y-axis. For instance, in

our example the original checkpoint object was at an angle of 106
on the Y-axis, therefore the new checkpoint object should be 286°
on the Y-axis (180 + 106).

 15. Remove the sphere collider component from the new checkpoint
object.

 16. Make this new checkpoint object a child of the original checkpoint
object.

 17. Select the Is Trigger check box for the Sphere collider component of
the original checkpoint object.

 18. Change the tag of the object to be Checkpoint; you will have to add
a new tag.

 19. Add a �nite state machine (FSM) to this main checkpoint object and
name the FSM Rotation.

 a. Rename State 1 to be Rotate.
 b. Add a Rotate action to this state.
 c. Set the Y Angle rotation value to be 8, leave all other settings at

their default as shown in Figure 8.8.

Now that we have an object out in our game world that will serve as
a checkpoint object for Sancho to run into, we are ready to get the
functionality going for the checkpoint itself. But, before we do that, we will
touch on a couple of things from the checkpoint object. The �rst thing to
notice is that we created two checkpoint objects and parented them. This
is because the materials and textures on them are only visible from the

326

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

normal side of the object. The normal side of an object is de�ned as the
side that light bounces o�. If we do not have light entering our eye then we
cannot see something, the same principle is at work with the cameras�within
a video�game. When the camera was on the normal side of the object,
we�could see the texture, however, when the object had rotated around�we
could not see the object. Therefore, to solve this problem, we simply
duplicated the object and �ipped it around so that the copy would have
its normal going in the opposite direction as the original object thereby
eliminating the side that was invisible. We could have also solved this
problem by creating a double-sided material by utilizing one of the other
Shader types within Unity, speci�cally the Nature � Tress Soft Occlusion

327

Mechanics

FIG 8.8 The Rotate action within the checkpoint object.

FIG 8.7 The checkpoint object positioned and scaled in the game world.

Leaves shader. We are now ready to move on and get the checkpoint
collision system working.

 1. Select Sancho in the Hierarchy panel.
 a. Create a new FSM named Checkpoints.

 i. Change State 1 to Idle.
 ii. Add a new state named Store Location.
 iii. Add a new event named checkpoint trigger.
 iv. Add a new Vector3 variable named checkpoint location.
 v. Add a new GameObject variable named checkpoint.
 vi. Select the Idle state.
 A. Add the checkpoint trigger Transition and connect it to

the Store Location state.
 B. Add a Trigger Event action and use the settings shown in

Figure 8.9.
 vii. Select the Store Location state.
 A. Add a FINISHED transition event and connect it to the

Idle�state.
 B. Add a Get Position action and use the settings in

Figure�8.10.
 C. Add a Destroy Object action and use the settings in

Figure�8.10.

The idea behind what we are doing is that whenever the player enters the
trigger area of the checkpoint object, we are going to store the location of
that checkpoint within the local variable that we have created and name
the checkpoint location. The grabbing of the location is done with the
Get Position action, but notice that we have changed it to get the current
position of another object; the other object we are looking at is speci�cally
the checkpoint object that we collided with earlier and stored it within that
checkpoint GameObject variable that we created for this purpose. This is
where a good understanding of variables is beginning to pay o� as we do
not need to know the values of the various things; the program needs to
know what they are.

328

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.9 The Trigger Event action settings for the Checkpoint system.

Once we have grabbed and stored that position, which is a Vector3 value,
we can go ahead and get rid of the Checkpoint object that we just collided
with. We are accomplishing this with the Destroy Object action, which
requires that we specify which object it is that we want to destroy. There is an
alternative action called Destroy Self that can be used to destroy the object
that the state machine is attached to.

When we run this to test it, the new system appears to be working correctly
as the checkpoint object that is rotating happily does disappear once we
collide with the trigger around it. But, just to verify, we would like to take it
a step further and make sure that the position of the checkpoint is indeed
being stored correctly. Ideally, we would wait until we have set up the
respawning system for testing, but then on the o� chance that it did not work
we would not know if it was broken in the new respawning system or if it was
broken within this system grabbing the position of the checkpoint.

In order to test it, we will select the checkpoint object in the Hierarchy
panel and take note of the Position vector that is within the Transform
component of that object. With that value noted, we will go ahead and run
the game again and go �nd that checkpoint to collide with it again. After
the checkpoint object disappears from the scene and while the game is still
running, open the PlayMaker editor making sure that Sancho is the selected
object within the Hierarchy panel. Select the Checkpoints FSM that we just
created from the state machine drop-down list. Select the Variables tab
and check the value of the respawn location variable, the values should
match the earlier value we saw for the Checkpoint object itself as shown
in Figure�8.11. Now that we know for sure that this system is working the

329

Mechanics

FIG 8.10 Settings for the Get Position state.

way that we need it to, we are de�nitely ready to move on. Any problems
we run into next will not be within this system but will be errors or bugs
introduced by the new system making debugging an easier process.

8.4.2 Sancho and Water

Like we did for the checkpoint system, we will have to add some things to
the current scene in order for this system to work as designed. However,
we can begin with the boundaries that are already in place surrounding
the island. We will use those boundaries for the deep part of the ocean
where Sancho dies and returns to his spawn point. The actual respawning
system will not be developed until the next system, so for now we will
initialize the killing of the player and display a message to the console
that Sancho has drowned. Eventually, the message to the console will
be replaced by a message to the user interface system, which we will
be developing in an upcoming chapter. Our first step will be to change
the tags of the cubes we are using as the boundary objects to Deep
Ocean. With the tags altered, we are ready to set up the collision within
Sancho�for this.

 1. Select the Sancho object in the Hierarchy panel.
 a. Add a new FSM to Sancho named Water Collision.
 b. Change State 1 to Idle.
 c. Add a new state named Deep Ocean.
 d. Add a new event named Drowning and an event named River

Current.

330

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.11 Verifying the value of the respawn location variable.

 e. Select the Idle state.
 i. Add the Drowning transition and connect it to Deep Ocean

state.
 ii. Add a Collision Event and set its properties to those of

Figure�8.12.
 f. Select the Deep Ocean state.

 i. Add a FINISHED transition and connect it to Idle.
 ii. Add a Debug Log action and use the settings in Figure 8.13.
 A. For Text, we have used “Sancho cannot swim and has

drowned.”
 iii. Add a Set FSM Bool action and use the settings in Figure 8.13.
 iv. Add a Set FSM Int action and use the settings in Figure 8.13.

We have seen all of these actions before, especially when constructing the
damage system for the spider earlier. However, we have added one new
action in the Debug Log action. There are many times that it is useful to spit
something out to the log or console window just to make sure things are
going the way that we think that they should be; for instance, our output to
the Console window is depicted in Figure 8.14. We can use such techniques
for temporary placeholders of eventual clean output to the user. We have
three di�erent levels that we can send our message to as follows: Info,
Warning, and Error. Essentially, the di�erence is going to be which icon is
displayed next to the text within the Console window. The Text property is
the message that we want displayed to the Console. We could have used a
convert to string action prior to this one to grab a variable and put its value
into a string that could then be spit out through this Text property. The �nal
setting is the option to put it in the Log �le only or to put it to the Unity Log
Window, which is the Console pane.

For the remaining collisions that we want with this system, we will need
to add some collision or trigger boxes to the areas that we want the
collisions to be detected and to occur. We will begin this process by
adding a 3D Game Object cube to our scene and placing it at the mouth
of one of the rivers (see Figure 8.15). Once the cube is in place, we will go

331

Mechanics

FIG 8.12 Collision Event properties for the Deep Ocean.

ahead and change its tag to be River Current, set the Collider Is Trigger
check box to be turned on, and turn off the Mesh Renderer component
of the object. Then we�will be ready to implement the collisions for this
new�object.

 1. Select the Sancho game object.
 a. Select the Water Collision FSM.

 i. Add a new state named River Mouth.
 ii. Select the Idle state.
 A. Add the River Current transition event and connect it to

the River Mouth state.
 B. Add a Trigger Event action.
 I. Set Collider Tag to River Current.
 II. Set Send Event to River Current.

332

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.13 The Deep Ocean state actions and properties.

FIG 8.14 The log message being displayed in the Console window.

 C. Select the Deep Ocean state.
 I. Hold down the SHIFT key and select each of the three

actions.
 II. Select the small gear icon in the top right corner of

one of the actions (see Figure 8.16).
 III. Select the Copy Selected Actions from the drop-down

menu.
 D. Select the River Mouth state.
 I. Right-click in the action panel and select Past Actions.
 II. Change the text in the Debug Log to read:

“Sancho�got�stuck in the current of the river and
has�drowned.”

This system is essentially identical to what we previously constructed for the
collisions with the deep ocean. All we need to do is to copy the cube that we
are using to the other two river mouths so that we will have the collisions
con�gured for all three of the river mouths coming out of the river. The
last�component of this system is going to be left as an exercise for the end
of�the chapter.

8.4.3 Respawning Sancho

In order to respawn Sancho, we will need to move him from wherever he
is currently located to wherever it is that we want him to be respawned;
generally speaking, this should be the last checkpoint that he crossed
and the location was saved. However, we do have one unique situation to
correct and that is the odd case of Sancho being killed before the player

333

Mechanics

FIG 8.15 The placement of the collision cube at the mouth of a river.

has managed to �nd a checkpoint and activate it. In order to cover this, we
are going to modify our Checkpoints state machine from earlier to match
the one depicted in Figure 8.17. We are going to add a new state to this
machine named Init.

 1. Select the Init state.
 a. Add a FINISHED transition event and connect the event to the Idle

state.
 b. Right-click on the Init state and select Set as Start State.
 c. Add a Get Position action to the state.

 i. Leave Game Object as Use Owner.
 ii. Set Vector to respawn location variable.

334

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.16 Gear icon in the top right corner of actions.

FIG 8.17 The modi�ed Checkpoints state machine.

This new state that we have added takes the starting position of Sancho
and stores it into the respawn location variable. This is a safety net so that if
the player dies before discovering a checkpoint, Sancho will respawn back
to this initial starting location that we have dropped Sancho into to begin
the level. The other element in this was the Set as Start State option�that
we used in order to make the newly created state the default starting state
for the machine. This is a nice feature to be aware of; in that�way, if we need
to make a di�erent state as the starting state, we can�easily modify the
starting state for any state machine that we have created.

We are now going to look at how we can modify an FSM that we had created
much earlier and that is actually part of the Prefab of Sancho that we made
at that time. The ideal location for our respawning mechanism is going to be
within the Health system that we have already created, this would also be a
good location to add some life logic for keeping track of how many lives the
player has. We will go ahead and select the Health FSM and as soon as we
do notice that a warning message appears as displayed in Figure 8.18. This
warning is letting us know that we cannot edit Prefabbed parts of our Sancho
object when we have the Sancho instance selected. It is perfectly �ne to add
new things to our instance in our scene, as we have been doing; however, to
alter any of the�core prefab parts, PlayMaker will require that we edit the prefab
itself. We can bypass this by changing the settings, but this is a good safety
message as we are learning our way around PlayMaker to make sure that we do
not accidently make a serious change that disrupts the prefab itself.

Consider it from this perspective, if we are changing one of the core prefab state
machines, then it stands to reason that we will most likely want that change to
cascade through all instances of this object. However, if we are only editing the

335

Mechanics

FIG 8.18 The Editing Prefab Instance warning message.

instance, then the changes will only exist within the instance we just changed
and not the prefab itself. We have two methods of solving this issue. The �rst is
to con�rm that we want to edit the default prefab FSM within the instance by
selecting the Edit Instance button, highlighted in Figure 8.18. Or, we can solve this
by updating our prefab object of Sancho with the changes that we have currently
made to our instance by clicking the Apply button located near the top of the
Inspector panel when the instance of Sancho is selected (see Figure 8.19).

Note
Objects in the Hierarchy panel are instances and objects in the Project
pane can be prefabs. When we add a prefab to a scene, we create an
instance of that prefab and still have the prefab available for other
scenes or to even add more of the same prefab to the current scene, for
instance, adding multiple sheep into our scene.

With the prefab updated with our new changes, which also means all other
scenes using this Sancho prefab have been updated with the new version of
Sancho as well, we can select the prefab from the Project pane � Prefabs �
Sancho and open the PlayMaker editor to make changes to the prefab itself.

336

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.19 Using the Apply button to update a Prefab.

We can be sure that we are editing the Prefab instead of the Prefab Instance
by noticing whether PlayMaker speci�es the object as a Prefab or not. For
instance, the state machine depicted in Figure 8.20 is from the Prefab object
as PlayMaker is noting within the highlighted circle. Now that we are working
with the Prefab object and have gotten rid of the warning message from
PlayMaker that stopped us earlier, we will modify the Health FSM so that
Sancho will respawn to the correct location after he dies.

 1. Create a new Vector3 variable named respawnPoint.
 2. Create a new state named Respawn.
 3. Select the Dead state.
 a. Add a FINISHED transition and connect it to the Respawn state.
 b. Disable all of the actions within the Dead state except for the Play

Animation action.
 4. Select the Respawn state.
 a. Add a FINISHED transition and connect it to the Reset state,

Figure�8.21 depicts the state machine.
 b. Add a Get FSM Vector3.

 i. FSM Name is Checkpoints.
 ii. Variable Name is respawn location.
 iii. Store Value is respawnPoint.
 c. Add a Set Position action.

 i. Vector is respawnPoint.

337

Mechanics

FIG 8.20 The location in the PlayMaker Editor that will specify the Prefab or Prefab Instance.

We have seen all of these actions previously or at least discussed them, so we
are fairly comfortable with the actions that are being used here. But, what we
did with the Dead state is something that we should take a moment to consider
before moving past. All of the actions that are in the Dead state will be needed,
eventually. The key to understanding what happened here is that this state was
only to be reached when Sancho is dead or when he has no more lives left. Once
Sancho is dead, he cannot respawn. For the exercise requiring the construction
of a life system, it gets placed into this area that we are working on here.
Speci�cally, when the player dies, we want to play the death animation where
we currently are. But after that is �nished, we want to evaluate how many lives
the player has left, if they have no more lives left then we want to go on and
do all of the actions that we just disabled, we want Sancho to be entirely dead.
However, if the player still has lives left, we would want to decrease the number
of remaining lives and then go on and respawn the player wherever they are
supposed to be and get the Health system back up and running. For our goal at
hand, respawning Sancho, we have completed the task and it is working as we
want it to, the life system is an exercise at the end of the chapter, just remember
the hints that we just discussed when working on it.

8.4.4 Sancho’s Collection System

The last example that we will build together in this chapter will be Sancho’s
collection system which can be easily modi�ed for use with other types of
collectible objects. In this case, we are going to build a sheep-collecting
system for one of his �rst quests in which he must �nd the sheep wandering
outside of the town and get them returned to a sheep pen within the town.

338

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.21 The modi�ed state machine for the Health system.

Go ahead and add one of the Flu�y Sheep models that we con�gured back
in the characters chapter with all of its animations. Figure�8.22 gives an
overview of the state machine that we will build for the idling sheep, and we
will name this FSM Waiting. We will begin by getting the sheep all set up to
handle collisions. Add a Box Collider component to the sheep and set the Is
Trigger to on. We are now ready to add on to the Waiting FSM for the sheep
to get some more behavior from it.

 1. Select the Flu�y Sheep instance that has been added to the scene.
 a. Create the Waiting FSM as depicted in Figure 8.22.
 b. Add a new state named Follow and a new state named Move.
 c. Add the variables and events from Table 8.3.
 d. Select the Idle state.

 i. Remove the Loop transition event.
 ii. Remove the call to the Loop event from the Play Random

Animation action.
 iii. Add the Start Follow transition event and connect it to the

Follow state.
 iv. Add a Bool Test action.
 A. Bool Variable is Follow.
 B. Is True is the Start Follow event.
 C. Every Frame is checked.
 e. Select the Follow state.

 i. Add the Go Move transition event and connect it to the
Move�state.

 ii. Add a Play Animation action and play the Idle animation.
 iii. Add a Get Distance action.
 A. Target is Follow Target (the variable).
 B. Store Result is Distance (the variable).
 C. Every Frame is checked.

339

Mechanics

FIG 8.22 The Waiting FSM for the �u�y sheep prefab.

 iv. Add a Compare Float action.
 A. Float 1 is Distance.
 B. Float 2 is 3.
 C. Greater Than is the Go Move event.
 D. Every Frame is checked.
 f. Select the Move state.

 i. Add the Stop Follow transition event and connect it with the
Follow state.

 ii. Add a Play Animation action and play the Walk animation.
 iii. Add a Smooth Look At action.
 A. Target Object is Follow Target.
 B. Ignore Vertical is checked.
 iv. Add a Move Toward action.
 A. Target Object is Follow Target.
 B. Ignore Vertical is checked.
 C. Max Speed is 1.25.
 D. Finish Distance is 3.
 E. Finish Event is Stop Follow.

We have used these actions in the construction of the AI system for the
spider, so there is nothing new here except the way that we have pieced this
construction together. What we are doing is having this system get turned on,
Follow Boolean being set to true, whenever Sancho triggers the collision with
the sheep. At that point, the sheep will see how far away from Sancho it is. If
it is more than 3 units away, then it will turn to face Sancho and move toward
him until it is within 3 units of him. Otherwise, the sheep will just stand there
and play its idle animation. We can go ahead and create a Prefab of this sheep
by dragging it from our Hierarchy panel down into the Prefabs folder of the
Project pane. This will allow us to have this sheep available in other scenes as
well if need be. Now that we have the sheep ready to follow Sancho around
the world, we will get Sancho’s system put together to trigger this behavior.

 1. Select the Sancho instance in the Hierarchy view.
 2. Create a new FSM named Collecting.
 a. Add the variables and events depicted in Table 8.4.
 b. Rename State 1 to Idle.
 c. Add states named Follow Me, All Sheep, and Found Count.

 i. Connect the states with the events as shown in Figure 8.23.

340

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 8.3 Required Events and Variables for the Flu�y Sheep to Follow Sancho Around

Events Variables and Types

Go Move Distance � Float

Start Follow Follow � Bool

Stop Follow Follow Target � Game Object

 d. Select the Idle state.
 i. Add a Trigger Event action.
 A. Trigger is On Trigger Enter.
 B. Collide Tag is sheep.
 C. Send Event is Got Sheep.
 D. Store Collider is Target.
 e. Select the Found Count state.

 i. Add a Get FSM Bool action.
 A. Game Object is Target (Specify Game Object).
 B. FSM Name is Waiting.
 C. Variable Name is Follow.
 D. Store Value is beenFound.
 ii. Add a Bool Test action.
 A. Bool Variable is beenFound.
 B. Is True is Skip (transition event).
 iii. Add an Int Add action.
 A. Int Variable is numSheep.
 B. Add is 1.
 iv. Add an Int Compare action.
 A. Integer 1 is numSheep.
 B. Integer 2 is �ndSheep.
 C. Equal is the Got Sheep transition event.
 f. Select the All Sheep state.

 i. Add a Debug Log action and set the text to “found all the
sheep.”

 ii. Make sure Send To Unity Log is checked.
 g. Select the Follow Me state.

 i. Add a Set FSM Bool action.
 A. Game Object is Target (Specify Game Object).
 B. FSM Name is Waiting.
 C. Variable Name is Follow.
 D. Set Value is checked.
 ii. Add a Set FSM Game Object action.
 A. Game Object is Target (Specify Game Object).
 B. FSM Name is Waiting.
 C. Variable Name is Follow Target.
 D. Set Value is Sancho (selected from the Scene/Hierarchy

view).

341

Mechanics

TABLE 8.4 Events and Variables Needed in Sancho for the Sheep Collection System

Events Variables and Types

Got Sheep beenFound � Bool

Skip �ndSheep � Int (set to 2)

numSheep � Int

Target � GameObject

We have seen these actions before as well or have at least seen actions
closely resembling them so that we may not need to explain each one in
detail. There are a couple of things that we should mention at this point
about the FSM Name and Variable Name properties. It was necessary to
type in both the FSM name and the variable name when con�guring those.
This is because we are using a variable to specify which object we want
to set variable values of. Since it is a variable that means that while we are
developing the state machine, the drop-down menus will not work because
PlayMaker does not know what the variable is going to be �lled with once
the game is running. Sure, we know that it should be a sheep object, but
PlayMaker does not know that. When typing in the name of the state
machine and the variable name, pay attention to spelling and capitalization
as these must exactly match that which we have inside of the sheep.

Another thing to point out is the general �ow of the logic. While we are
using actions that we have seen before, we should make sure that the logical
construction that we have built here makes sense. To begin when we collide
with a sheep, we entered into the Found Sheep state. The purpose of this
state is to increase the number of sheep that we have found if the one that
we just collided with was one that we had not already accounted for. As the
sheep follow us, they will stop when they are near, and Sancho can go collide
with them again at that point in time. If that were to happen, then the sheep
he is colliding with would have the Follow Boolean variable set to true. Since
we are grabbing that value inside the Collecting state machine, if it is true,
we are skipping out of the rest of the actions inside of that speci�c state,
otherwise we will drop down to the next action in the list, which is where we
handle the counting of the sheep.

With that comparison out of the way, we know that the sheep we just hit
has not been accounted for before; if it has been hit before, then we are no
longer inside of this state—we have transitioned out of it. What we will do

342

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 8.23 The FINISHED layout for the Collecting FSM.

next is to add one to our current number of found sheep and compare that
to the number of sheep that we are trying to �nd. If those two numbers
match, then we will transition over to the event with the Debug Log action
in it. This action is really just a placeholder for the moment, as eventually
we will want some UI stu� going on here, but we will have the state in place
and ready to have those new UI actions added to it at that point in time.
Notice that we did not need to worry about transitioning to the Follow
Me state as we are having the FINISHED transition event take care of that
for�us. The only way we get to have a FINISHED transition event �red by the
state we are in is in the condition that the current number of found sheep
does not match the number of sheep that we are looking for, in which case
execution will drop down to the next action and since there is no other
action the system �res a FINISHED transition event that we are handling in
this state.

Note
Remember that actions are executed sequentially from top to bottom in
the list of actions for a state. If we have something that is triggering an
event, then we will not proceed to the following actions in the list if that
event does get triggered, for instance, in a Compare action.

We can now test this and make sure that when Sancho runs up to the
sheep that it will follow us around, delivery of the sheep to a pen is being
saved for an exercise at the end of this chapter based upon our earlier
design work with it. Also, make sure to add more sheep to your scene and
ensure that we get the message displayed in the console window after we
have successfully collected the speci�ed number of sheep. If your sheep
does not follow your Sancho around, double-check the following:

• Make sure the sheep is tagged as sheep.
• Make sure the tag we are looking for in the trigger event of

Sancho is�what the sheep is tagged as, double-check spelling and
capitalization.

• Make sure the Is Trigger box is checked on the sheep’s collider, we are
using a box collider on ours.

• Make sure that the Every Frame check boxes are checked for both the Idle
and Follow states inside of the sheep.

• Make sure that the Set FSM Bool and Set FSM Game Object actions are
con�gured correctly from our list earlier.

8.5 Summary
We are now at the point where we have something that is playable and can
be shown to other people. The player of our Sancho game can run around
and collect sheep and return them to the pen in order to complete the

343

Mechanics

�rst quest of the story line. We also introduced a system to enhance our
level boundaries such that Sancho can be drowned by going too far into
the water and respawn back at a point of our choosing. As can be seen
from the examples that we constructed, implementing game mechanics
within our games is no more complex than any of the programming
work we have done up to this point. All it takes is for us to make sure we
understand what we want to do through the design stage prior to trying to
implement anything. Now that we see the importance of the mechanics in
our games and not only the core mechanics but the balancing mechanics
as well, we are now ready to begin putting some �nishing touches on our
game project. However, take some time to work through the exercises
adding more mechanics and also take a stab at adding some of your
own designs to the game as well. It is in the process of scripting for game
mechanics that we will really stretch ourselves as programmers and as
designers,�both�of which mean that we are stretching ourselves as game
developers.

Download
You can �nd the �nal scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter8_part2.”

Vocabulary
Game mechanic
Core mechanic
Balancing mechanic
Story mechanic
Victory condition
Loss condition
System mechanic
Catch-up mechanic

Review Quiz
 1. What is the di�erence between a core mechanic and a balancing

mechanic?
 2. Why are balancing mechanics added and tweaked during play testing of

the game?
 3. Why can’t core game mechanics be protected by copyright law?
 4. Why is it important for developers to play a wide variety of games?
 5. Why is it best to have other people play test your game design?

344

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Exercises
 1. Play a game of your choice paying particular attention to the mechanics of

the game. Write down the mechanics that are used in the game, speci�cally:
 a. What are the core mechanics?
 b. What, if any, are the balancing mechanics?
 c. What, if any, are the story mechanics?
 d. What, are the victory/loss conditions?
 2. Given the additions to the project from this chapter, the player still

has an in�nite number of lives with which to play. Add a system to the
game so that the player only has three lives and after the third life is lost
the character does not respawn; double-check the discussion on the
respawning system for hints on this one.

 3. Create a system in which the player can go �nd the lost donkey, Dapple, and
after �nding the donkey it will follow the player around wherever they go.

 4. Add the necessary pieces and state machines for the river system so that
the player cannot run across the rivers instead of using the bridges.

 5. Implement the system that will drop the sheep o� into one of the pens
once Sancho has brought them back to the pen.

 a. HINT: Knowing when to leave the sheep should be pretty
straightforward, but where will you put the sheep? Think about the
waypoints we used with the spider or even the respawn system of
Sancho.

Design Document
In this addition to the Sancho Panza design document, we have added the
logical components of some of the mechanics for our game as was discussed
over the course of this chapter.

Download
Updated version of the Sancho Panza design document can be
downloaded from the companion website: “DesignDocument_chapter8.”

Consider your design document that you have been working on and add the
following to it:

 1. Create designs for the following elements of your game concept:
 a. Core mechanics, what are the basic rules of the game.
 b. System mechanics, how will the player interact with the game.
 c. Story mechanics, will there be any special rules needed to stitch the

story into the game and make it a viable component of game play.
 d. Victory/loss conditions, how does the player win or lose the game,

which should have been considered with the initial work on the
design document.

345

Mechanics

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

SECTION III
Bringing It Together

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 9

Audio

Audio is a surprisingly deceptive aspect of game production. It is easy to think
that the audio will not take long at all to do and that we will not have any trouble
getting the sounds and music that we want. However, there are copyright laws
that we have to be very aware of while developing our games. In this chapter,
we will not only look at how to use audio but also how to get audio as there are a
wide range of sources that we can utilize. It is the audio that begins to bring the
polish to our game projects and really consolidates the rest of the work into a
uni�ed setting. However, misuse of our audio can also be a major setback to the
project as we lose the e�ect that we are trying to accomplish within the game.
Audio is a ton of fun to play around with, and as we start adding these features
into our game, the game seems to launch itself to a whole other level.

• How Is Audio Used in Games?
• Types of Audio
• Finding Audio
• Introduction to Editing Audio with Audacity
• Audio within Unity
• Accessing Audio through PlayMaker

349

9.1 How Audio Is Used in Games
Audio within video games essentially comes in three di�erent varieties:
music, ambience, and e�ects. While we will look at each individually, it is
important to realize that they all work together to create a uni�ed audio
experience for the game player. The audio that we select for each use must
be carefully considered in order to make sure that it blends with our other
audio in the game, but also to make sure that it blends well with the story,
theme, and environments that we have already constructed. While it is
possible to break rules and expectations to get a desired response from
the player, or just to keep the player on their toes, we need to know and
understand those rules before we start breaking them. As a rough example,
in our current project, Sancho is in a rather cheery, outdoorsy type of
environment at the start of the game. Granted, all of the people have left
and it is somewhat empty, but still there is no sense of ominous foreboding
within the start of the game. Based on this, the music that we select to
go with the start of the game should also have an open and somewhat
lighthearted feel to it.

Unity can import the following audio formats for use as audio sources
within our projects: aif, wav, mp3, and ogg. Unity will also support tracker
modules, which are similar to MIDI �les in that they can contain multiple
instruments and scoring information, in the following formats: it, s3m, xm,
and mod. Generally speaking, unless you have a leaning toward music
and audio, you will only need the general audio formats that were �rst
mentioned and will not need to worry about the Tracker modules, though it
is nice to know that they are supported if and when you decide to advance
your audio skills and knowledge. We will look at importing audio clips into
our project later in this chapter.

9.1.1 Music

Music within video games serves the same purpose as the soundtrack does
within a movie. With the music we can set the mood and feeling of a scene
within a level. As the player explores the level that they are within, music can
be utilized to build tension or to provide a soothing backdrop depending on
the situation. We can approach these di�erent situations with either looping
or adaptive music. How music is used within a game is largely de�ned by the
genre of the game as well. For instance, in exploratory or adventure style
games, the player may be wandering a certain area for quite some time and
as developers we have no control over when the player gets to a certain
point in the level making these types of games more adapted to a score or
instrumental type of music background. On the other hand, in a �ghting
game the very structure of the games is such that each level is a �ght,
making them more easily adapted to traditional vocal music tracks. Also,
a racing game puts the player into a vehicle where we are used to a radio
existing and the music being of the typical rock or pop variety and less of a
movie soundtrack.

350

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Looping music is an audio track that will play and then restart back at
the beginning when it has �nished continuously; you can think of this
in�the same way as having your favorite mp3 set on repeat in your player.
The�problem with using a looping music track for an entire level is that most
musical scores have an inner personality, they have peaks and they have
valleys. Each individual track of music is intended to provide the listener
with a journey in some way. An example of looping music could be a nice
country exploration track playing while Sancho is running through the forest
looking for sheep, but then switching to something with a little more beat
to it when he comes back into the town. One of the tracks can have a very
open and natural feel, while the town track feels more busy and bustling and
active. Both tracks can be played independently and they will loop as long as
Sancho stays within the given environment.

Adaptive music, on the other hand, is intended to adjust to where and what
the player is currently doing. It is music that will change as the player works
through the environment. This is more than just switching to a di�erent
looping track of music, however. With the example from the looping music,
we just switched our audio track to a di�erent one, but with adaptive music
the switch is smoother, using transition tracks to actually blend from the one
to the other. Figure 9.1 depicts a rough diagram of the di�erence in these
two approaches. Adaptive music does loop just as the looping music does;
however, the individual pieces of the adaptive system will be shorter since we
may need to transition to something else at any given moment.

Whether we select to utilize �xed looping or adaptive music is a decision
that we need to make fairly early as it has a strong impact on the types
of music that we need to either look for or create on our own. When it
comes to creating our own music, if you are a musician (or know one) then
the potential of creating your own musical scores for your games grows
exponentially; however, if you are not a musician then you are limited to
the music that others have created. Generally speaking, people very rarely
release their music for use free of charge, so if we are searching for free music
we will have to limit ourselves to the ones that come the closest to what we
would like to have.

Another option, for those that are musically inclined but may not play
instruments, is to look for and invest in some precomposed snippets of
scores such as Pro Scores from Video Copilot (https://www.videocopilot.net/
products/proscores). This provides a collection of music that can then be
layered together in an audio editing program to create a musical composition
of your choosing. This is a lot of fun to play around with, though it is de�nitely
not a quick answer to creating a musical score for your game. Then again,
when it comes to music within your game there really is no quick �x. Table�9.1
presents the types of music that we would like to �nd to throw into our
project. When considering the music that you would like in your game, try
to describe it as best you can; even if you are the only one that really “gets”
what you are describing, you still need to put in the e�ort to think about and
describe what you would like.

351

Audio

9.1.2 Ambience

Ambience is the background noise of an environment. This is the sound
of cars driving past your house, or the sounds of chickens clucking on
a farm, or the sound of the ocean waves near the beach of Barataria.
Without these ambient noises, our environment seems dead, we might
see the water moving, but without the sound of the water moving we
are missing a huge part of the experience. At first glance it seems as
though the addition of the ambient sounds would not really make that
much of a difference, however they bring the environment to life around

352

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

�� ������������� ����
�� ���

���� �����

������
�����������
�� ���

������ ���������

���� ��	��� ��� �� �� ��	��� �

����������������������
��	���������

�� �
�� �� ������������

�� �� �� �����

���� ��	��� �

�� �
�������
�������

�������•

������ ���������

������
�����������
�� ���

�������•

���� �����

�� �
�������������

���������� �� ����������

�� �� �� ��	��� �

�������•

�� ������������� ����
�� ���

��	���������

FIG 9.1 Looping music at top versus adaptive music at bottom.

the�player. We need to be careful, however, that we do not bring in too
much ambient noise and turn our environment into a cacophony of sound
that assaults the player. For instance, we can have the sounds of crickets,
birds, sheep bleating, rustling breeze, and donkeys braying as an ambient
noise for our forest around the town. But if we keep adding to this, then
it becomes way too noisy and the illusion of the environment that we are
trying to create is destroyed. Also, with ambient sounds, they should not
all play at one time or even play in the same order or in a specific pattern.
It is best to have some basic looping track for the ambience, maybe the
sound of a breeze blowing, and then to randomly insert extra sounds
here and there. Another thing to consider with relation to ambient audio
is how loud it is in comparison to where the player is within the level.
The sound of the ocean should not necessarily be audible throughout
the whole island but should be heard along the beach. At the same time,
the sounds of creaking doors from the town should not be heard at the
beach but should be heard within the town itself. When constructing
ambient audio, we need to consider the different types of sounds that
we might want to have within our environments as well as the different
types of sounds that might exist in a similar real-world counterpart for our
environment similar to Table 9.2.

353

Audio

TABLE 9.1 The Di�erent Types of Music for the Game

Location Sound and Feeling

Main menu Something light with an upbeat feel that gives the idea of an adventure, but
not an ominous kind of thing.

Town The town is empty and abandoned, something that is haunting but not
eerie or spooky, just a feeling of emptiness and loneliness.

Surrounding pastures The pastures are brightly lit and friendly places with lost animals, something
upbeat and light that brings an open feeling.

Forest The forest is a dense and hostile place with many spiders and skeletons and
bad things, need something that heightens tension in this area to keep the
player on edge.

Fighting When in combat with a spider, the music needs to be fast and the action
paced to work with the tension of the battle, but it should not be ominous
as we want the player to win the �ghts.

TABLE 9.2 Potential List of Sounds to Use for an Ambient Audio System

Location Types of Sounds

Rivers Bubbling water, �owing river, birds, �sh jumping

Beach Surf, waves, breeze, seagulls

Town Creaking shutters, breeze, creaking doors,
scurrying mice

Forest Mostly still to enhance the darkness of the forest

Pastures Breeze, birds, animals

9.1.3 Sound Events

Sound events provide direct feedback to the user for various occurrences
during game play. When the user hovers the mouse over a button or when
the user clicks the button we can provide not only visual cues to the player
(changing the color of the button for instance) but also audio cues for the
player. Audio can also be applied to other distinct events within the game such
as the sound of a footstep or the sound of a punch hitting a spider. All of these
are used to not only bring those events to life but also to help notify the player
of what is occurring within the video game. A simple example of this is the
sound of tires squealing when going around a corner too fast in a racing game;
this simple audio e�ect is informing the player that they need to be careful
before they end up putting the car into the wall and having other bad things
happen to them. While ambient sounds are tied to the environment and make
audio that seems reasonable given the visual cues of the environment around
the player, sound events are tied directly to the actions of the player giving the
action a depth and meaning within the world. As a general rule nearly every
event that the player can initiate while interacting with the game world should
have some type of audio �le associated with it as presented in Table 9.3.

9.2 Finding Audio
There are many places and methods for getting audio for your game project.
However, taking your favorite band’s CD and ripping the audio from it to use
as background music is not a good option as that will lead to a copyright
violation. While learning about game development we can get away with a
lot of things because we are doing noncommercial or educational work. But,
at some point we will want to transition over into doing commercial work and
when we do so we will bring any bad habits that we have taught ourselves over
into this commercial side of things. With this goal in mind, we are going to go
ahead and approach our noncommercial project as though this were a game
to be sold for pro�t and focus on obtaining legal audio that we can use. For this
purpose, we will be using two primary sources for all of our audio: the Unity
Asset store and the free sounds website at: freesound.org. As you continue to
work on your own projects and to expand your own library of usable assets,
keep in mind that you can record audio �les using a microphone or even
your cell phone and that you can also purchase very large and professional
sound e�ect libraries from sources such as Sound Ideas (sound-ideas.com).

354

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 9.3 Possible Sound E�ects That We May Want

Footsteps—grass Mooing cows Sancho idles Sheep are found

Footsteps—wood Animal footsteps Mouse over button Donkey bray

Footsteps—rock Hitting spider Mouse clicks button Donkey idle

Footsteps—leaves Being bit by spider Spider walks Collection complete

Footsteps—water Sancho dies Spider charges Sancho jumps

Bleating sheep Sancho respawns Sheep pen closes

Just�ensure that the creator of the audio you are using has licensed the work to
you to use royalty free in your projects. Table�9.4 provides a detailed list of the
audio that we will be using for our examples within this chapter.

Note
The Creative Commons License is one that generally gives you the right
to use and alter �les as you see �t even within a commercial context.
Freesound.org has most of their audio �les under this license, just
double-check the license the developer has put their work under before
making any assumptions.

Download
The audio �les that the creators allowed to be redistributed have been
included in a zip �le in the resources section of the companion website:
“audio.zip.”

355

Audio

TABLE 9.4 List of Audio and Sources for Our Examples

Source Audio Use

Freesound.org Nature � Sheep bleat outdoors
By Yuval

Noise for our sheep

Freesound.org River & Woods Ambience � Flowing river
in the woods

By CastleofSamples

Sound of a �owing river

Unity Asset Store The Fantasy Music Collection (STARTER)
By John Leonard French

Nice music tracks

Unity Asset Store Authentic Early Medieval Ages Pack (FREE)
By Marma

Time period music

Unity Asset Store GUI Button SFX Pack
C.R.Faith Music

Noises for the UI

Freesound.org Footsteps_Grass.wav
By kMoon

Walking on grass

Freesound.org Footsteps � Fun with a water puddle
By hintringer

Walking in water

Freesound.org Stone Steps
By Phil25

Walking on the stone in town

Freesound.org GreenCouch Fieldrecordings � Beach
Waves Medium.wav

By GreenCouch

Sound of the surf

Unity Asset Store EPIC ARSENAL—Essential Elements Free
Epic Sounds and E�ects

General UI and system sounds

Freesound.org Bird Chirps
By shw489

Interesting bird sounds

Freesound.org Breeze.wav
By keweldog

A breeze blowing

9.3 Introduction to Audacity
Many times when you �nd an audio �le to use for a sound e�ect, the �le will
actually contain several di�erent versions of the e�ect, for instance, the bleating
sheep audio �le from the last section. We would prefer to break these types
of �les up into individual audio �les and to do this we can use a tool called
Audacity. Audacity is a powerful and free sound editing tool that we can use
to record, construct, and edit audio �les. As far as recording, we can utilize
Audacity to record any audio through a microphone. Another interesting option
is to install an app on your smartphone that allows recording through it as well.
Through either one of these approaches you can get a wide range of audio �les
that you have created and as a result can use however you want. An important
thing to consider with audio is that we can use the same audio �le for di�erent
sound e�ects. Audacity can be obtained from http://sourceforge.net/projects/
audacity/, and Figure 9.2 displays the default user interface for this application.

The �rst section of Figure 9.2 depicts the control buttons that are used in
order to play, pause, stop, skip forward/backward, and record audio. The space
bar can also be used to play and pause rather than always having to move
the mouse up to the control buttons in this section. Section 9.2 holds the
modes that we can use to interact with our audio �les once they are loaded
within Audacity. We can use this to switch to mark mode to mark an in and out

356

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.2 The default user interface of Audacity.

location within the track; we will see this in our upcoming example, or we can
switch to zoom mode to zoom in and out to get a better feel of the waveform.
The third section contains graphical displays of the levels within the recording,
with peak levels being marked by a blue line as can be seen in Figure 9.3. The
fourth section is the waveform viewer which will depict our audio �le in its
waveform once we load one in. It is in this pane that we can directly work with
the audio �le utilizing the di�erent modes from above. Finally, Section 5 is
used to indicate the in and out times for our selections, shown in the �rst two
time boxes, and the actual position of the green play head (see Figure 9.3 the
play head is circled), shown in the third time box labeled “Audio Position.”

9.3.1 Cutting Up an Audio File

We will now edit the bleating sheep �le that we got earlier in order to have
several di�erent bleating sheep sounds that we can then randomly play
at various times, think about the random animations that we worked with
earlier in the book. We will begin by loading the bleating sheep �le, either
using File � Open or simply drag the �le onto the Audacity editor pane.
When you do so, you will get a warning message as shown in Figure 9.4. This
message is essentially telling us that if we were to edit the original �le and
then save over that original �le we could never go back to the original �le
and therefore Audacity believes it would be best if we saved a copy of the

357

Audio

FIG 9.3 Audacity while playing an audio �le, note the audio levels and the green play head.

�le and edited that instead of the original. While we have never run into any
issues with Audacity and our audio �les, it is always better safe than sorry
when it comes to assets and the work�ow pipeline for game development; as
a result we will stay with that default recommendation of Audacity and after
agreeing we will have an audio �le ready to edit as can be seen in Figure 9.5.

Before we start editing the �le too much, we will take a moment to see what
we know about this �le. We can tell that there are eight di�erent bleating
sheep sounds within this one audio �le, see Figure 9.6 in case the eight
sheep did not jump out when looking at the waveform. We can also see that
this track is stereo, it has a left and a right audio channel. The left is the top
waveform and the bottom waveform belongs to the right channel. It is not
necessary that the left and right channels match identically as these two
do, however. The controls to the left of the waveforms allow us to pan our
audio, give more strength to one side over the other, as well as to increase
or decrease the gain level of the audio �le. When creating selection regions
within Audacity, we can either use the mouse to click and drag a selection
range or use the arrow keys while pressing the SHIFT key to create selection
regions, see the video on using Audacity for more information. Once we have
created a selection range within Audacity, playing the audio �le will only play
the region that has been selected; this can help us �ne tune and tweak our
selection ranges in conjunction with the zoom mode to get a close look at
the boundary areas. Now that we have the very basics of the Audacity sound
editor, we are ready to get to work and chop up this �le.

Video
This chapter’s folder on the companion website contains a video
depicting a visual walkthrough of the Audacity user interface and some
of its features and tools: “Using Audacity.”

358

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.4 Warning message generated by Audacity when loading a �le.

 1. Create a selection around the �rst of the bleating sheep noises in the
editor, see Figure 9.7.

 2. Select File � Export Selected Audio.
 a. Save the �le as a WAV (Microsoft) signed 16 bit PCM, see Figure 9.8.
 b. Rename the �le to sheep_bleat_01.
 c. Skip the Edit Metadata window by clicking OK when it opens.

 3. Repeat this process for the remaining bleating sheep.

The process of exporting audio from one �le and into another one is a pretty
straightforward a�air. A quick word of caution when doing this revolves
around the selection stage when using the arrow keys. The arrows keys are
oftentimes the easier approach to use when making selections; however, if
your selection range extends beyond the audio that you are after pressing
the opposite arrow key extends the other side of the range, it does not
shrink the range back up as shown in Figure 9.9. When the range extends
beyond�the audio that we want, it is best to use the mouse to bring it back in
and then tweak with the arrows if need be. The mouse cursor will change to a
pointing �nger when it nears the border of the range indicating that we can
click and drag the boundary. With a little practice creating selections within
Audacity will become second nature very quickly.

359

Audio

FIG 9.5 The Editor pane after loading an audio �le.

Note
When using the arrow keys for selections in Audacity, the left arrow will
always move the left border (starting border) to the left, and the right
arrow will always move the right border (ending border) to the right.

9.3.2 Applying E�ects to Audio

For our next example, we will look at some of the e�ects that are
available�within Audacity which will allow us to tweak and change audio
more than just cutting sounds out of it. We are going to create the
introductory narration audio �le that was used in our chapter on story to
introduce the backstory to the player at the start of the game. For this, one
of my kids is going to read the narration while using a microphone to record
the sound into Audacity, but you can download the original audio �le from
the companion website. Once we have the audio recorded, we can begin to
play around with it. To create a recording, make sure to plug a microphone
into your computer and click the red circle record button on Audacity.
When �nished, click the yellow square stop button to stop the recording.
We recommend leaving a few seconds of silence at the start and end of any
recording that you make.

360

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.6 The location of the eight bleating sheep in the audio �le.

361

Audio

FIG 9.8 The Export Audio dialogue box in Audacity.

FIG 9.7 The �rst bleating sheep is selected within Audacity.

Download
You can download the original audio recording of the introductory
narration from the resources section on the companion website:
“intro_narration_original.wav.”

Note
While specialized microphones may be purchased, we use a standard cell
phone headset with a microphone that is plugged into a splitter adapter
to split the microphone and speaker signals before plugging into the
computer—though there are many other solutions available.

 1. Load the intro_narration_original �le into Audacity.
 2. Select the empty space at the beginning of the recording from

0.0�to�2.0.
 3. Select E�ect � Noise Removal.
 a. Click the Get Noise Pro�le button.
 b. Cancel the Noise Removal tool.
 c. Press CTRL-A to select the whole audio �le.

362

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.9 The selection range has extended past the desired audio.

 d. Return to the Noise Removal tool.
 e. Change Noise Reduction (dB) to 48.
 f. Change Sensitivity (dB) to 5.
 g. Click OK.

 4. Select the opening of the audio �le that was used for the Noise Pro�le
and delete that section, we no longer need it.

 5. Reselect the whole audio �le and use E�ect � Change Pitch.
 a. Set Percent Change to �9, keep the other settings at default and

click OK.
 6. Select E�ect � Compressor and keep the default settings, click OK to

apply the e�ect.
 7. Select E�ect � Reverb.
 a. Set Room Size (%) to 10.
 b. Set Predelay (ms) to 1.
 c. Set Reverberance (%) to 30.
 d. Set Damping (%) to 30.
 e. Leave other settings at default and click OK.

 8. Select the section of blank audio at the end of the �le and delete it.
 9. Export the �le as intro_narration_backstory.

After loading the audio �le, our �rst step is to clean it up a little bit. It is very
common for there to be some type of background noise or clicking sounds
within a homemade recording. The Noise Removal tool is one approach to
eliminating this, in our case we were speci�cally after getting rid of or at least
minimizing the clicking sounds generated by the microphone hitting his shirt
as he was recording the audio. Before we can remove noise, we must provide
the tool with a sample of that background noise, which is the Noise Pro�le.
While that sample does not directly contain the o�ensive clicks, it does
provide the other ambient noises of the room that are helpful in cleaning up
this recording.

The Change Pitch e�ect can be used to lower or raise the pitch of a recording,
or section of a recording. In our case, we wanted to drop his voice down some
and get closer to a movie kind of voice-over during the trailers of movies,
particular the cheesy action movies of the 1980s. The more we drop the pitch,
however, the more the voice seems to drag, so there is a balancing act to how
far down we are willing to let it go.

After changing the pitch of the recording, we are going to bring in the
compressor to give the audio a little more body and depth. The idea of the
compressor is to be able to increase volume without having the audio start
clipping. Audio clipping is created when the audio being played is at the
maximum audio level that it can be; clipping is something that we want to
avoid as it does not sound very good. Generally speaking, when it comes
to increasing the volume of an audio we consider increasing the gain, but
what that does is to raise all frequencies within the source the same amount
and will usually introduce clipping. The compressor, on the other hand, will

363

Audio

increase the frequencies by an average amount thereby avoiding the clipping
but also giving the source a deeper presence, which was part of our goal on
this one.

Our �nal step in this process is to add some room reverb to this �le and give
it a nice big feel to it. Reverb can be used to give a recording a more natural
sound by simulating the way that audio behaves in di�erent environments.
This is to say that reverb governs how audio might echo and re�ect o� of
di�erent surfaces of the surrounding environment. For our purposes, we
just wanted to get the reverb to give the recording a little more depth and
also a presence with the soft echo behind it but did not want it to be too
overpowering.

With our modi�cations done to the �le, we can get rid of the slight excess at
the end and go ahead and export it out. Of course, we already have the �nal
exported version of the �le in our project, anyway. After exporting the audio
�le back out, we have obtained the narration audio that was originally used
earlier. There are many e�ects available within Audacity and are documented
within the Audacity manual found at http://manual.audacityteam.org.

9.3.3 Adjusting Volume Levels

Before we leave this section, we will do one more very quick example of
something that is a common need when dealing with audio in a video
game, getting our audio sources to be of the same or similar volume levels.
Consider the music folk tune found in the Authentic Medieval Ages Audio
collection in comparison to the tracks Dangerous Dungeon and Tavern
Lively found within the Fantasy Music Collection. The ones in the Fantasy
Music Collection are louder than the Folk Tune. Since we will eventually be
using these three tracks as part of our background music system, we will get
them more balanced.

 1. Select the Tavern Lively track in the Project view.
 a. Right-click on Tavern Lively and then select “Show in explorer.”

A�new window will open with the �le visible.
 2. Open the Tavern Lively track within Audacity.
 3. Select E�ect � Amplify.
 4. For Ampli�cation set the value to �10 dB.
 5. Export the �le as Tavern Lively—Adjusted.
 6. Repeat the process for the Dangerous Dungeon track.

9.4 Audio in Unity
The �rst step to using audio within Unity is to get it imported into our
project. We have previously imported audio �les into our project, but
did not look at the properties that these Audio Clips have once they have
been imported. We have already mentioned the audio formats that are
supported by Unity and as long as our audio �le is one of those formats we

364

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

will be able to work with it just �ne. When an audio �le has been imported
into Unity it becomes an audio clip which can then be dropped into an
Audio Source component to play the audio within a project. Before getting
too far ahead of ourselves, we are going to go ahead and clean up our
Audio folder within our project by embedding some new folders as shown
in Figure 9.10. Audio, like any of the other assets, is going to become very
confusing if we do not organize our �les to make them easier to �nd within
our project. After creating the folders, we have moved the music and UI
sources (obtained from the Asset Store as listed earlier) into the appropriate
folders and moved our introductory narration over to the Voices folder as
well. We can go ahead and import our bleating sheep and other audio �les
at this point in time.

Figure 9.11 displays the Inspector window for an audio file that has been
imported into Unity. The first check box allows the audio to be forced
into a single channel of sound rather than dual channel stereo output.
The next option will allow loading of an audio clip in the background,
as opposed to the primary thread being used by the game within the
CPU of the system. The default for this option is off as Unity prefers to
load all audio clips before starting to play a level and this approach
would be best to guarantee that we do not try to play an audio clip that
has not yet loaded into memory. The final check box is to preload the
audio data, which is the default setting, and indicates that this audio clip
will be loaded up before the scene actually begins to play. If we have
many large audio files in a scene, the loading of all of these files can be
cause for delay on starting the scene. Following the check boxes, we are
greeted�with some drop-down selection menus that have been detailed
in Table 9.5.

365

Audio

FIG 9.10 The new folder structure for the Audio folder of our project.

An Audio Source component must be added to any object that we want audio
to be produced by. We can even create an empty object and add an Audio
Source to it, for instance, for ambient sound. This Audio Source is going to
specify what audio �le we want to play as well as provide some settings for the
playback of the audio. While the Audio Source component is the source of the
audio, or the speakers of the audio, within the game world, an Audio Listener
component is the player’s microphone, or ears, within the game world. There
can be many di�erent Audio Source components within a given scene; however,
there can only be one Audio Listener component in the scene. The Audio
Listener is what Unity uses to determine the e�ects of 3D audio while the player
is moving around within the game world. As a general rule, the Audio Listener
is added to the primary camera in the scene as that is both the player’s eyes and
a reasonable location to put the player’s ears within the virtual world. An Audio
Source component can play two types of audio in our games: 3D and 2D.

9.4.1 2D Audio

Download
You can �nd the starting scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter9_part1.”

366

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.11 The properties of an Audio object imported into Unity.

As a simple example to explore these settings, we will go ahead and add
an Audio Source component to the bridge that is crossing over the river
and get our river ambient audio working, it may be necessary to disable
any boundary systems that were created in the previous chapter if they are
blocking our access to the bridge. 2D audio is the simpler of the two varieties,
though it shares many of the same properties as the 3D audio, as shown in
Figure 9.12. The AudioClip property is the actual audio that will be played by
this Audio Source, by default it is blank. We can either specify an AudioClip
directly within the Audio Source or we can specify an audio clip to play within
our PlayMaker script, which we will do later. For the Output, we can either
send the sound directly to an Audio Listener component, which is generally
what we will want, or we can have it sent to an Audio Mixer and apply some
e�ects to it similar to what we did in Audacity.

The Mute check box allows us to prevent a sound from being heard without
stopping or pausing its playback. A potential example of this use would be
if Sancho could stu� his ears with cotton while running around. When the
ears are stu�ed, then we could mute the audio but keep them playing so
that whenever the player removes the cotton from Sancho’s ears the audio
becomes audible again from the point that it should be�at. This would be
very di�erent than stopping and restarting the audio at the beginning or

367

Audio

TABLE 9.5 The Audio Clip Drop-Down Menu Selections

Option Use

Load Type: Decompress on Load The source audio is decompressed into memory as soon as it is
loaded. Best used for small �les to prevent the overhead of
decompressing them during playback.

Load Type: Compressed in Memory After the source is loaded into memory it will stay in its
compressed format. Best used for larger �les where the
decompressed version would take up too much memory.

Load Type: Streaming This approach will decode sounds while playing and will utilize
the least amount of memory as the sources are not loaded
until needed.

Compression Format: PCM Highest quality of compression but will create larger �le sizes so
it would best be used by small sound e�ects.

Compression Format: Vorbis This is the middle ground with �les smaller than the PCM but
larger than ADPCM. Similar impact to the quality of the audio
as well.

Compression Format: ADPCM Best used with small �les that are played many, many times.
Creates much smaller �les and less CPU usage.

Sample Rate Setting: Preserve
Sample Rate

Keeps the default sample rate of the audio source.

Sample Rate Setting: Optimize
Sample Rate

This will optimize to the highest frequency that has been
analyzed internally.

Sample Rate Setting: Override
Sample Rate

This will override any default sample rate information from the
source �le.

even pausing and then resuming the audio from the same location. The
three bypass check boxes allow us to skip over any processing that might
be done to audio �les and instead send this Audio Source straight to its
target without any in-game modi�cations to it. The �nal two check boxes
allow us to have the audio automatically start playing when the object
becomes active; this assumes that an AudioClip has been speci�ed for the
Audio Source otherwise there will be nothing to play. Then we can set the
audio to be a looping audio, something very useful for ambient or music
tracks.

The �nal section of settings allows us to alter the priority of the Audio
Clip. Most games will have multiple sounds occurring at any one time and
through this Priority slider, we can specify how important a particular
audio is: 0 is most important and 256 would be the least important. Volume
allows us to decrease the volume of the Audio Source; we say decrease
because the volume cannot be increased above 1 which is the maximum
volume level within the audio �le itself. If you have an audio �le that is
too quiet within your game world and you need to get it louder, bring
the audio �le into Audacity and increase it within there with the available
e�ects for what you need done. The only other setting that we need to
concern ourselves with at the moment is the Spatial Blend setting. This one

368

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.12 The shared audio properties of 2D and 3D audio.

allows us to specify whether the audio source is a 2D or a 3D audio. 2D is
best suited for game music or other types of audio that should be the same
audio level through the entire scene. 3D, on the other hand, is best suited
for ambient audio or�sounds that should be heard di�erently depending on
the location of the�listener.

9.4.2 3D Audio

The di�erence between 3D and 2D audio is that 2D audio is the same
throughout the whole level, whereas 3D audio behaves di�erently
depending on where the listener is in relation to the Audio Source. Figure�9.13
displays the settings that are available for a 3D audio component. The
Doppler Level de�nes how much of a Doppler e�ect to apply to the audio
source, a value of 0 would indicate no e�ect. Doppler e�ect governs the way
that sound behaves as we move closer or further away from it, generally at a
high velocity. As the listener moves in relation to the source, the wave of the
audio becomes either longer or shorter which in turn impacts the pitch of the
audio itself.

369

Audio

FIG 9.13 The 3D speci�c properties for an Audio Source component.

The min and max distance properties are used to control the radius of a
circle around the source of the audio that governs the attenuation of the
signal as shown in Figure 9.14. Attenuation refers to the decay of the signal.
If the listener is closer than min distance to the source then the audio will
be at full volume. As the listener moves away from the source, the audio will
gradually decay while the listener is still within the attenuation range. Once
the listener has gotten to the max distance from the source then there is
no more attenuation of the signal and it will continue to play at whatever
volume it would have dropped down to by the time the max distance has
been reached, many times this volume setting is 0.

The Volume Rollo� drop-down menu allows us to select a default
algorithm for how the audio attenuates. The options that we have
available are described in Table 9.6 and graphically shown in Figure 9.15.
The graph at the bottom of the settings also displays the attenuation of
the source signal. The curve of the graph can be manipulated manually
by grabbing anchors and moving them. This allows us to specify how the
fallo� of the audio occurs. Within the graph we can also see where the
listener is in relation to the source and this can be very bene�cial when
we are trying to �ne tune the audio of various aspects within our level,

370

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Lowest or no volume

Max
distance

Full volume

Attenuation range

Min
distance

FIG 9.14 Graphical representation of attenuation of an audio signal.

TABLE 9.6 The Volume Fallo� Algorithms Available in Unity

Volume Rollo� How It Works

Logarithmic Very loud when close, however, the audio very rapidly drops in volume level
becoming too quiet to hear in a short distance traveled from the source.

Linear The drop o� in volume occurs at a constant and smooth rate. It stays louder
longer than does the logarithmic fallo�.

Custom Starts with a default ease-in and ease-out type of tangent for the audio
volumes and can then be modi�ed to best �t the needs.

especially dealing with ambient�noises. Many times, we may start with one
of the default fallo� algorithms and then manually tweak it to get exactly
what we want.

9.4.3 Playing Ambient Audio

We are going to create an ambient audio track for our river system utilizing
the Audio Source component that was just added to the bridge to �nalize the
concepts of the 3D audio source. Our goal here is to have the river sounds
when we are on the bridge be their loudest but for the audio to fade as we
move away from the bridge. We should be able to hear the river when we are
close to the bridge but it should not be as loud as if we were standing on the
bridge directly above the river, although if we are at the start of the bridge it
should be fairly loud as well.

 1. Add the river ambient sound downloaded earlier to the AudioClip
property of the Audio Source.

 2. Leave Play an Awake checked and check Loop.
 3. Set the Spatial Blend to 3D (1).
 4. Set the Volume Rollo� to Linear Rollo�.
 5. Set the Max Distance to 50.
 6. Play the game to test these starting settings and run Sancho toward

the bridge.
 7. Note Figure 9.16:
 a. The blue circle in the Scene view shows the max distance of the

audio.
 b. The fallo� graph shows that Sancho is currently standing close to

30 units from the source (he is the black smudge immediately to
the left of the green arrow head in the Scene view).

 c. Try rotating the character from left to right, notice how the
audio shifts from right to left speaker as needed. Now run onto
the bridge and note the same e�ect, why is this happening and
should it happen?

 d. Move toward the edge of the bridge, how far away from the
source is the listener at that point?

371

Audio

FIG 9.15 The three di�erent fallo� algorithms: Logarithmic, Linear, and Custom.

Our ambient audio is working, though we came out of the play test with a
couple of questions to consider as we tweak this to get it the way we really
want it to be. The �rst thing that we notice is that even with a simple audio
like this, our level feels so much better already. Onto the questions that we
posed, we will begin with the last, as can be seen in Figure 9.17, the edge
of the bridge is roughly 10 units from the Audio Source. We need to know
this because it seems reasonable that the sound of the river really should
be just as loud if we are standing immediately on the edge of it as if we
were standing directly over the middle of it, there really should not be any
attenuation at the edge of the river. But if we notice the graph shown in
Figure 9.17, the volume has already attenuated at this point to roughly 75%
of the original volume level, this is not so good for us. To �x this we will
shift the Min Distance from 1 to 10 by changing the value of Min Distance.
We could also do this by grabbing the red diamond that indicates the min
distance inside of the graph and move it around to wherever we want.
Figure 9.18 shows how this diamond has moved with the change of the Min
Distance value.

Note
When adjusting the fallo� curves, linear can only adjust the min and
max values, the rest cannot be adjusted because by de�nition the fallo�
forms a straight line from the min to the max value.

372

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.16 Sancho has neared the river and the Scene view shows the Audio Source’s range.

373

Audio

FIG 9.17 Sancho standing at the edge of the bridge.

FIG 9.18 Adjusting the Min Distance, left is default of 1, right has been adjusted to 10.

We will now return to the �rst question that we considered when putting this
together. The audio seemed to be rotating more than it should when we had
Sancho standing on the bridge. If we consider this, regardless of which way
Sancho turns, he should be completely surrounded by the audio of the river.
While this has been partly cleared up by moving the min distance out further,
hopefully you noticed something very interesting during your play test. Namely,
once Sancho was on the bridge and we started to rotate Sancho, or for that
matter wherever Sancho is, did you notice that the distance the Listener was
from the Source kept changing within the graph (this is shown in Figure 9.19)?
But if Sancho is not moving closer to or further away from the source, then
why was this occurring? The answer to this riddle is found in the position of the
Audio Listener component. Currently, it is stored within the Main Camera that is
a child of Sancho. When Sancho rotates, the camera moves as well to maintain
the same perspective on the character, this was part of the character controller
system that we constructed. However, the Audio Listener should not be moving
like that, rather, we should move the Audio Listener component onto Sancho
to eliminate that odd �uctuation that we were getting while standing on the
bridge. We have now analyzed our simple play test of the river’s ambient audio
system and are ready to make the �xes that we have discovered and try it again.

 1. Stop the game.
 2. Change the Min Distance value from 1 to 10.
 3. Select the Main Camera object within Sancho and remove the Audio

Listener component.
 4. Select Sancho and add an Audio Listener component.
 5. Click the Apply button at the top of the Sancho instance to apply

these changes to the Sancho prefab object as well.
 6. Test again, notice that rotating does not change the distance of the

Listener from the Source.

374

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.19 The movement of the Audio Listener when Sancho rotates.

9.4.4 Playing Background Music

Now that we have some ambient audio playing for our river, we are going
to put in a background music track for our level as well. When we get into
PlayMaker we will take a look at how we can change the music track that is
playing within a state machine, but for now we will go ahead and set a basic
track to play for the whole level. Make sure that the music packs from the
Unity Asset Store in Table 9.4 have been downloaded and imported into your
project; they should have already been moved into the Music folder within
the project’s Audio folder. We have many options to select from for our
pasture/exploration music track; we are going to go with the Folk Tune found
within the Authentic Medieval Ages Audio collection that was obtained from
the Asset Store.

• Add a new 3D Object � Cube to the scene.
• Name it Music and attach it to the Sancho object.
• Change the position of the Music object to 0, 0, 0, if it is not

already.
• Disable the Mesh Renderer component.

• Add an Audio Source component.
• Put folk tune into the AudioClip property.
• Set Spatial Blend to 2D (0).
• Set the Priority to 0.
• Set Loop to checked.
• Change the Volume level to 0.3.

• Play and test.

Now, when we run the game we have a nice background track playing that
matches our goals for the background music of the pasture area. When you
do play test, make sure to run over by the river and double-check the sound
levels, this music �le is much louder than the river so we can either adjust
them in Audacity (as we did with the music tracks earlier) or we can just lower
the volume of the music here within the Audio Source. You want to make
sure that the music does not overpower the ambience and that the ambience
does not overpower the music, they should blend well together. Our
approach of lowering the volume level is working very well at the moment,
but we do need to be aware of the potential issues that can arise by relying
on adjusting volumes rather than setting all audio to same volume levels.

9.5 Using PlayMaker to Play Audio
As we have just seen, we can create quite of bit of noise within our games
without having to do any scripting of any kind. However, as we have also
seen, we can only go so far before we will have to develop some behaviors
with scripting, or in our case state machines inside of PlayMaker. We are going
to explore three di�erent types of systems which will be remarkably similar.
As we are nearing the end of our exploration of Unity and PlayMaker, we are

375

Audio

beginning to notice there is a tremendous amount of interactivity we can
create with essentially reusable actions or at the very least reusable logic but
di�erent sets of actions themselves. All three of our examples will share the
basic logical structure, as can be seen in Figure 9.20, the di�erences will be
found in how we will trigger the events and where we will be placing the state
machines. Once these examples are understood, we can construct nearly any
audio response system we want within our games.

9.5.1 Background Music

We will modify our background music system so that di�erent tracks will be
played in di�erent locations; Table 9.7 presents our layout for this. The idea
behind this will be to create trigger areas that when the player enters into
those regions the Audio Clip that is being played by the Music object will
change to the appropriate audio �le. To make this system easier to manage
and expand into other levels, we will also create Inspector level variables
to store the Audio Clips, that way we can easily change and assign the
appropriate audio at the Inspector level rather than having to return to the
state machine to make any changes.

 1. Add a trigger region for the town.
 a. Create a 3D Object � Cube.

 i. Rename the Cube to Town Trigger.
 ii. Give the object a Tag of Town (will have to create a new tag).
 iii. Position it on the town and resize it to cover the town, see

Figure�9.21.
 iv. Disable the Mesh Renderer.
 v. Switch the Box Collider to a Trigger (turn Is Trigger on).

376

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

������������������

�������

�� �
 �	��������� ��� �������������	
����������� �
 ���

FIG 9.20 Logical structure of audio systems within PlayMaker.

TABLE 9.7 The Di�erent Music and Their Trigger Zones

Music Title Region

Tavern Lively—Adjusted
The Fantasy Music Collection

Default background music, to be played when exploring the
pasture or beach areas.

Folk Tune
Authentic Medieval Ages Audio

Plays while the player is within the town on the island.

Dangerous Dungeon—Adjusted
The Fantasy Music Collection

To be played when the player crosses over the bridge and enters
into the forested area.

 2. Select the Music object attached to Sancho.
 a. Change the default AudioClip to none.
 b. Add a Rigid Body component (Physics � Rigid Body).

 i. Turn o� Use Gravity.
 ii. Turn on Is Kinematic.
 c. Open the PlayMaker editor and add an FSM named Music

Controller.
 i. Add the variables and events listed in Table 9.8; make sure all

the variables are set to be Inspector level variables.
 ii. Change State 1 to Exploration.
 iii. Add a state named Mournful.
 iv. Select the Exploration state.
 A. Add the Play Mournful event and connect it to the

Mournful state.
 B. Add a Set Audio Clip action.
 I. Audio Clip should be exploration.

 C. Add an Audio Play action.
 I. Set Volume to the volumeLevel variable.

 D. Add a Trigger Event action.
 I. Collide Tag should be Town.
 II. Send Event should be Play Mournful.

 E. Add a Trigger Event action.
 I. Collide Tag should be Forest.
 II. Send Event should be Play Exciting.

377

Audio

FIG 9.21 The trigger region for the town on the island.

 v. Select Mournful state.
 A. Add the Play Exploration event and connect it to the

Exploration state.
 B. Add a Set Audio Clip action.
 I. Audio Clip should be mournful.

 C. Add an Audio Play action.
 I. Set Volume to the volumeLevel variable.

 D. Add a Trigger Event action.
 I. Trigger should be On Trigger Exit.
 II. Collide Tag should be Town.
 III. Send Event should be Play Exploration.
 IV. Close the PlayMaker editor and set the Inspector

variables for the Music object as shown in Figure 9.22.

Note
When adding variables of type Object, remember that we set the type of
Object it is after the variable has been added to the list.

Notice that with the new music controller system we have built one of the
�rst things to do was to remove the music being played automatically so that
we could have the state machine govern what would be played and when
to play it. It was also necessary for us to add the Rigid Body component to
our Music object in order for the system to recognize when a collision, or
in this case trigger, event occurs and send such an event to the object for
processing. Other than that, the controller system utilizes two of PlayMaker’s
audio actions: Set Audio Clip and Audio Play.

At �rst glance, it would seem as though we could use the Audio Play action
all by itself, but the One Shot Clip property de�nes which Audio Clip to play
one time. Once the Audio Clip de�ned by One Shot Clip is �nished playing,
it does not loop back to the beginning regardless of what the Audio Source
components are set for. Now, we could force it to restart by using the FINISHED
Event property to call an event that loops back to this state to restart the music.
However, the issue with that approach is twofold. On the one hand, it is a rather
cumbersome and ugly approach to getting it to work. On the other hand, it
will introduce another event and transition into our state machine and will not

378

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 9.8 The Events and Variables for the Music Controller State Machine

Events Variables and Types

Play Exploration exploration � Object � Unity Engine � AudioClip

Play Exciting exciting � Object � Unity Engine � AudioClip

Play Mournful mournful � Object � Unity Engine � AudioClip

volumeLevel � Float

decrease the number of actions we need to use. The reason the action number
would stay the same is that we would have to add an Audio Stop action to each
state to stop any currently playing audio before starting up a new one. So, in
the situation of transitions to a new region, the old music will continue to play
with the new music playing at the same time, unless that Audio Stop action is
used to stop the old music before starting the new music. Another potential
solution to the problem would have been to use the Set Audio Loop action, but
we still would have had to have the Audio Stop action anyway.

The Set Audio Clip property is used to de�ne the AudioClip that is used by
the Audio Source component. This is di�erent from the One Shot Clip in
that we can now still use the Looping property that is established as part
of the Audio Source component so that the music will cleanly loop without
any other processing overhead by our controller state machine. Another
advantage here is that we will not need to worry about stopping the playing
music because the music is running o� of the Audio Source component
properties more directly and once we change the Audio Clip that is within
that Audio Source it can no longer play the music. The One Shot Clip property
of the Audio Play action is best used for sound e�ects or other short audio
things as we will discover in our next example.

9.5.2 Ambient Sounds

We have already seen one style of ambient sound system in the one
that we constructed for the rivers. However, ambient sounds can also
be applied to an object within the game world as opposed to the whole

379

Audio

FIG 9.22 The Inspector variable settings for the Music object.

region. For�instance, the sheep that we have put out into our game
world, we could have them randomly bleat every now and then creating
an ambient noise e�ect, but being generated by the individual objects
themselves rather than being generated within a region. The real
di�erence here is that if we are injecting a sheep bleating noise, then it
would make sense for the noise to come from and be heard near sheep.
However, if we were adding in some other ambient noise, such as chirping
birds, that the player cannot actually see then it makes sense to keep those
ambient audio e�ects within a region as the unseen noise makers could be
anywhere around the player.

 1. Select the Flu�y Sheep prefab object in the Project pane.
 a. Add an Audio Source component to the object.

 i. Set the Spatial Blend to 1 (3D).
 ii. Set Min Distance to 0.
 iii. Set Max Distance to 10.
 iv. Set Volume Rollo� to Linear Rollo�.
 v. Adjust the Max Distance until the blue sphere covers the

region as well as possible, keep in mind that at the areas that
will play other audio and therefore not need to be covered,
our setting is 45 and is shown in Figure 9.23.

 2. Open the PlayMaker editor and create a new FSM named Bleating.
 a. Create the events and variables listed in Table 9.9.

 i. For the sounds array set the size to eight and insert the
bleating sheep audio �les created earlier into their slots, see
Figure 9.23.

 b. Change State 1 to Check and add a Play Something state and a
Pause state.

 c. Select the Check state.
 i. Add the Go Play event and connect it to Play Something.
 ii. Add the Go Wait event and connect it to Pause.
 iii. Add a Random Float action.
 A. Store Result should be num.
 iv. Add a Float Compare action.
 A. Float 1 should be num.
 B. Float 2 should be 0.4.
 C. Equal should be Go Wait.
 D. Less Than should be Go Play.
 E. Greater Than should be Go Wait.
 d. Select the Pause state.

 i. Add a FINISHED event and connect it to Check.
 ii. Add a Random Wait action.
 A. Min should be 1.
 B. Max should be 5.
 C. Real Time should be checked.

380

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 e. Select the Play Something state.
 i. Add a FINISHED event and connect it to Check.
 ii. Add an Array Get Random action.
 A. Array should be sounds.
 B. Store Value should be playSound.
 iii. Add an Audio Play action.
 A. One Shot Clip should be playSound.

This system is working by picking a random number between 0 and 1 and
then comparing that random value to some arbitrary value that we have
selected, currently this is 0.4. The higher this value the more often we will
get sheep noises and the lower the value the less often. The interesting
thing about this random component of the system is the addition of the

381

Audio

FIG 9.23 The array con�guration for the bleating sheep sounds.

TABLE 9.9 The Events and Variables for the Bleating of the Sheep

Events Variables and Types

Go Play playSound � Object � Unity Engine � AudioClip

Go Wait sounds � Array � Object � Unity Engine � AudioClip

num � Float

Pause state. This is done to prevent a max loop count error from occurring.
Remember, things inside the game are running at frames not at a real-time
system. What this means is that if the check for a random number failed then
on the next frame it would loop back and do it again. You can see that if our
threshold value, the 0.4 in this example, is low enough then it is going to take
a while before we trigger a transition, at least awhile in terms of frames but
not in terms of human time. So to sidestep this checking every frame we have
introduced the Pause state. If the check for a random value fails then we go
to the Pause state and sit there for a random real-time amount of seconds
before trying to pass our play sound test again.

Once the test is passed and control is handed o� to the Play Something
state, we reach into the array of Audio Clips that we have and pick one of
them at random, any one it does not matter which one. After selecting
that random Audio Clip, we assign it to our temporary playSound variable.
Currently, PlayMaker does not allow us to drop the array item directly into
an Audio Play action even though the array is an Audio Clip data type,
this has to do with how PlayMaker is handling arrays internally and really
does not concern us other than to recognize that we will have to drop that
randomly selected Audio Clip from within the array into a single variable
of type Audio Clip for everything to play well together and work as it
should. This same random construction could be added to the river to
introduce some random splashes or frogs or whatever we would like, with
one caveat. The random system will have to be added to its own empty
object with its own Audio Source component and then attached to the river
ambient audio object. This is because the way that the system recognizes
when an Audio Clip has �nished playing, that is, how to get out of the Play
Something state, is to look at the Audio Component and see if it is still
playing. On the river ambient system it will still be playing that looping
river sound we put on it and as a result the Play Something state will never
directly �nish.

9.5.3 E�ects for Events

We are going to create a couple of di�erent event audio setups from which
we can then derive any type of audio event that we may want in the future.
The �rst example will be some kind of audio to go with the collisions of the
rotating checkpoints to indicate to the player that the system knows they
just hit the checkpoint. The other example will be some footsteps for Sancho
as he runs around the world. We will begin with the checkpoint system,
when Sancho collides with the checkpoint we want to play an audio clip.

 1. Select the Checkpoints state machine within Sancho.
 a. Add a checkpointAudio variable of type AudioClip to it, make the

variable Inspector level.
 b. Add a volumeLevel variable of type Float and make it Inspector

level.

382

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 c. Select the Store Location state.
 i. Add an Audio Play action.
 A. Volume should be volumeLevel.
 B. One Shot Clip should be checkpointAudio.
 2. In the Inspector set the following:
 a. checkpointAudio is Book Drop 7 (from Free Epic Arsenal

collection).
 b. volumeLevel is 0.3.

As can be seen in the example, adding sound e�ects to events within a game
is a very straightforward process using actions that we have already used
before. It is also important to note that we do not, generally speaking, need
to add any more states or events to our state machine. Usually, the logic is
already in place for handling the collisions and doing something as a result
of the collision all we need to do is to drop in an Audio Play action with the
settings we would like to use within the appropriate state and we have added
audio to it.

Our next example, however, is going to involve a little bit of construction on
our part. We are going to combine what we learned when we created the
music controller system with what we now know as a result of our sound
events and ambient systems to create a footstep system for Sancho. We
have two approaches on how we can construct a footstep system, as shown
in Figure 9.24. The collision-based system makes more sense and seems to
be a more reasonable approach to generating these footsteps; however, we
need to ask ourselves if we really need the system to be doing extra collision
detection for our audio. Ultimately, this is going to come down to the degree
of exactness that your game project requires as getting the timing perfect
can be very di�cult. We have already created two footstep sound �les that
can be used for this example; they were derived from the footstep audio
�les listed earlier and then edited within Audacity to get just one sound

383

Audio

Play footstep sound

Started moving
FINISHED FINISHED

Timing delay

Idle

Stopped moving

Stopped moving

FINISHED
Collision with ground

Idle

Play footstep sound

FIG 9.24 The system on the left is collision based for footsteps while the system on the right is time based.

from�each. We could expand this by getting the other footstep sounds from
the original �le and then playing a random footstep noise each time.

Download
The footstep audio �les used in the following example can be obtained
from this chapter’s folder on the companion website: “example_
footsteps.zip.”

 1. Select the Sancho prefab object in the Project pane.
 a. Add a new FSM to it named Footsteps.
 b. Add the events and variables de�ned in Table 9.10.

 i. For the time variable give it a default value of 0.27 and make it
Inspector visible so that you can edit it during runtime to get
a�smooth timing.

 ii. At the moment set the sound variable to be footstep_grass_01
from the audio �les downloaded earlier from the companion
website.

 c. Change State 1 to Standing Still and add a state named Walking
and another state named Pause.

 d. Select the Standing Still state.
 i. Add a Go Move transition and connect it to the Walking state.
 ii. Add a Get FSM Float action.
 A. FSM Name should be Movement.
 B. Variable Name should be speed.
 C. Every Frame should be checked.
 iii. Add a Float Compare action.
 A. Float 1 should be speed.
 B. Float 2 should be 0.05 (roughly).
 C. Greater Than should be Go Move.
 D. Every Frame should be checked.
 e. Select the Walking state.

 i. Add a Stop Moving event and connect it to the Standing Still
state.

 ii. Add a FINISHED event and connect it to the Pause state.
 iii. Add a Get FSM Float action.
 A. FSM Name should be Movement.
 B. Variable Name should be speed.
 C. Every Frame should NOT be checked.
 iv. Add a Float Compare action.
 A. Float 1 should be speed.
 B. Float 2 should be 0.05 (roughly).
 C. Less Than should be Stop Moving.
 D. Every Frame should NOT be checked.
 v. Add an Audio Play action.
 A. Volume should be 0.2 (roughly).
 B. One Shot Clip should be sound.

384

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 f. Select the Pause state.
 i. Add a Stop Moving event and connect it to the Standing Still

state.
 ii. Add a FINISHED event and connect it to the Walking state.
 iii. Add a Get FSM Float action.
 A. FSM Name should be Movement.
 B. Variable Name should be speed.
 C. Every Frame should NOT be checked.
 iv. Add a Float Compare action.
 A. Float 1 should be speed.
 B. Float 2 should be 0.05 (roughly).
 C. Less Than should be Stop Moving.
 D. Every Frame should NOT be checked.
 v. Add a Wait action.
 A. Time should be delay.
 B. Real Time should be checked.

This system works by playing an Audio Clip, the grass footsteps one, whenever
the player is moving. We can determine if the player is moving or not by looking
at the value of the moveSpeed variable that is within the Movement state
machine and is derived from the magnitude of the movement vector we were
able to get from the Vertical input axis. Since we know that we are moving, we
can go ahead and play our footstep sound e�ect then pause before playing it
again. As it turns out 0.27 seconds of delay works out fairly well for the way that
Sancho is moving on our test machine, your value may need to be tweaked
depending on the movement velocity that you may have Sancho set for. This is
a fairly simple system to construct and understand how it works without adding
another collision detection for the processor to have to be calculating every
frame and potentially slowing things down. Admittedly the collision detection
overhead on this particular game would be negligible, but it is still a good idea
to consider these things anyway. The only thing left for this system is to have it
change footstep sounds based upon where the player is.

 1. Select the Music object attached to the Sancho prefab in the Project
pane.

 a. Add the following variables to the Music Controller FSM:
 i. grass_footstep � Object � Unity Engine � Audio Clip.
 A. Default value of footstep_grass_01.

385

Audio

TABLE 9.10 The Events and Variables needed for the Timed Foostep FSM

Events Variables and Types

Go Move sound � Object � Unity Engine � AudioClip

Stop Moving delay � Float

speed � Float

 ii. stone_footstep � Object � Unity Engine � Audio Clip.
 A. Default value of footstep_stone_01.
 b. Select the Exploration state.

 i. Add a Set FSM Variable action and see Figure 9.25 for the
settings, note that the Variable Name will need to be typed in so
make sure it is spelled and capitalized the same as the variable
name that you used in the Footsteps state machine. Also, drag
Sancho from the Project pane onto the line for Sancho under
Specify Game Object.

 c. Select the Mournful state.
 i. Repeat the process with the Set FSM Variable action but this

time use stone_footstep for the Set Value property.

Our footstep system can be expanded to incorporate any other audio zone
that we might decide to add, or for that matter our Music Controller could be
renamed to be Sound Zone Controller and then we can add an ocean region
to it that will only alter the Footsteps variable value without changing the
background music that is being played.

9.6 Summary
In this chapter, we looked at how Unity plays audio files and how we
can get these audio files to play when we want through the use of
PlayMaker. Adding the ability to play audio and music to our game has
turned out to be a fairly simple process, once we were able to find the
audio files that we wanted to use. We were also able to randomize some
audio elements. As mentioned at the beginning of this chapter, audio
is oftentimes overlooked by developers as something that will be easy
to do later, but it is often more time consuming than we had planned,
as finding the perfect sound for a specific use in our project is not

386

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 9.25 The properties for the Set FSM Variable action in the Music Controller.

as straightforward as we had hoped. When it comes to audio, always
remember that most of your time will be spent trying to find the audio
sources that you would like to use and then getting them prepped
for use in your game. Setting up the behavior scripts for the audio to
respond to various in-game events generally does not take too long,
although getting the 3D properties just right can take a fair amount of
tweaking. However,�now�that we have added audio to our project and
have gotten it�tweaked into our environment and game events, the world
of Barataria�is really beginning to come alive and is developing a feeling
for itself.

Download
You can �nd the �nal scene for this chapter in the complete project
package on the companion website, the scene name is: “Chapter9_part2.”

Vocabulary
Tracker module
Looping music
Adaptive music
Ambient audio
Sound e�ects
Creative commons license
Play head
Reverb
Pitch
Gain
Clipping
Amplify
Audio Clip
Audio Source
Audio Listener
2D Audio
3D Audio
Doppler e�ect
Linear rollo�
Logarithmic rollo�
Attenuation

Review Quiz
 1. What audio formats does Unity support?
 2. What is the challenge with using adaptive music in your game projects?
 3. What is Audacity used for?

387

Audio

 4. Why does Unity only allow one Audio Listener in a scene?
 5. What are the three volume rollo�s supported by Unity?
 6. What is the purpose of the Min and Max Distance properties with 3D

audio?
 7. Which PlayMaker action can be used to play an Audio Clip?
 8. Which PlayMaker action can be used to stop an Audio Source that is

playing?
 9. Which Play Maker action can be used to change the AudioClip property of

an attached Audio Source component?

Exercises
 1. Try to �nd some other sources for audio than those that were mentioned

in the chapter, what are the advantages and disadvantages of the new
sources you have found?

 2. Finish the Music Controller system by adding a trigger region for the
bridge and forest area and get it working with the system that was
already created for the town.

 3. Using the provided water footstep �le, create a region in the ocean that
the player gets watery footsteps instead of the pasture ones.

 a. HINT: Use the Music Controller as hinted at in the last section of
the chapter and maybe switch based on a collision with the water
object, we do not need to worry about transitioning to any of the
other sound zones when we are colliding with the water in the
ocean, why?

 4. Find an audio �le to use to alert the player of when they have collected a
sheep and get that sound working in the game.

 5. Add an audio �le for when Sancho swings his �st and also when he bonks
with his belly.

 6. Add an audio �le for when Sancho jumps.
 7. Bring a spider into the level and put him on the bridge. Disable his

patrolling behavior. Add Sound for the spider’s actions of noticing
Sancho, attacking Sancho, and being killed by Sancho. Likewise, add
noise to Sancho for when he gets hit by the spider, when he gets killed,
and when he respawns.

Design Document
In this addition to the Sancho Panza design document, we have detailed the
audio �les that we will need, or would like to have, within the game project.
We have also speci�ed what would cause the audio to play as well as where
certain audio regions would exist within the game world.

388

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Download
Updated version of the Sancho Panza design document can be
downloaded from the companion website: “DesignDocument_chapter9.”

Consider your design document that you have been working on thus far and
add the following to it:

 1. Describe the type of music that you would like to incorporate into your
game project and the various regions you would want the music playing.
Pay special attention to the mood and feeling that you are trying to
get across. At this point it is OK to list real songs to help other people
understand the sound that you are looking for in your music.

 2. Create a list of sound event e�ects that you may need in your game
project. It is better to have too many than not enough. Consider the
following:

 a. What actions can the player perform?
 b. What UI elements will be in the game?
 c. What other characters are in the game and what can they do?
 3. Create a list of audio that you would like to be able to incorporate as an

ambient audio system, consider the various regions and levels of your
game and what you would like those areas to sound like.

389

Audio

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 10

The User Interface

The user interface, or UI, is the primary means by which the player receives
secondary information from a game. In this chapter, we will look at how Unity
handles the graphical user interface, or GUI, in a game project and how we can
leverage this to display information for the player. While it is possible to play a
game based solely on what the player can see from the camera’s perspective
of the game world, at some point in time we will need to implement menu
systems or scoring systems or life systems or even short text messages to the
player. The creation of GUIs can be a very fun and rewarding experience as your
game projects will begin to develop some polish to them through this process.
We will also look at some basic principles for the design of our interface systems;
as it turns out, there are some interesting ideas that we can utilize to make our
interfaces better and easier to use for the player, which is our primary goal—
focusing on the needs of the player while playing our game.

• Types of User Interfaces
• User Interface Design
• User Interface Implementation within Unity
• Updating the User Interface through PlayMaker

391

10.1 The Types of User Interfaces
Every game has di�erent needs from its user interface system. This basically
says that every game does not need to have every type of UI within the project,
but only the ones that are bene�cial to that speci�c game. At their core, the
purpose of graphical UIs is to either get information from the player or to get
information to the player. As a general rule, the information exchange is not a
part of game play per se but adds to and enhances the game play that is within
the game. Essentially, we have two types of graphical UIs that we use in video
games: menu-based systems and heads-up display (HUD) systems.

10.1.1 Menu-Based Systems

Menu-based systems serve the purpose of getting information and input
from the player. While there are some exceptions in providing for player input
through an overlay system, generally speaking we rely on menu systems
and their equivalent for getting input from the player. Menu-based systems
are generally comprised of input components for the player to use such as
buttons, sliders, and text boxes. An obvious use of such a system would be
the main menu of a game from which the player may select to play or quit the
game, and any other options that may be presented. The whole purpose of
the interface is to �nd out what it is that the player wants to do. For the MMO
player we can see another use of a menu-based system within a crafting
interface. From one of these, the player is able to select which object they
want to craft, how many they want to craft, and then either start the process
or cancel and return to the game. Many times when menu systems are
utilized, they exist outside of the game world itself, that is to say that they are
not a direct part of the game world itself, but extensions of it. Menu-based
systems are usually drawn in a 2D style and can easily be designed within a
2D graphics program such as Photoshop or Illustrator. However, there is a
trend to migrate these traditional menu systems away from the standard 2D
approach into a 3D type of interface. This move toward 3D menu systems not
only allows the menus to be more appealing and active graphically, but they
can also make it easier to blur the line between menu and game and push
these menu systems into feeling more a part of the immersive game world
rather than something outside of the game.

10.1.2 Heads-Up Display Systems and Overlays

The primary goal of a heads-up display (HUD) or overlay interface is to get
information to the player about the current condition of the game. If we
do not let the player know what is going on within the game that they are
playing they are very likely to move on to other games. The information that
a player needs to know can vary from how fast a car is traveling in a racing
game to how many lives the player has remaining in an action–adventure
game such as Sancho Panza. These HUD systems are generally created as
overlays that sit on top of the game world itself. Generally speaking, HUD
systems are 2D as an overlay over the game world. However, it is possible to

392

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

embed an interface into the game world making it an integral component of
the game itself and still relay relevant and timely information to the player.
An example of this di�erence would be a numerical display of a car’s current
speed on the bottom-right corner of the screen, a HUD overlay, versus a
working speedometer on the dashboard console that the player can see
while driving the car, an embedded HUD overlay.

10.2 User Interface Design
When it comes to the design of the UI for video games, they really
have their roots in a field of Computer Science called human computer
interaction (HCI). The goal of this specific branch of study is to not only
understand how we as people interact with computers, but also how
that interaction can be improved and made more intuitive. True UI
involves more than just what is displayed on the screen, the software (SW)
interface system, but it also involves how the user physically interacts
with the computer system, the hardware (HW) interface. We are not going
to look into the physical interaction in this chapter as we are limited to
the HW that has already been developed for use in our game projects.
The study of developing HW for use as an interface is well beyond an
introductory topic, therefore so we will not touch on it here other than to
mention some of the different types as shown in Table�10.1. It is important
to be aware of these different HW interfaces when designing our game,
as mentioned during the chapter on the design document, as there
are major differences between utilizing a virtual reality system and a
traditional computer monitor.

393

The User Interface

TABLE 10.1 Di�erent Types of Hardware Interface Systems

Hardware
Interface Example Pros Cons

Virtual reality
headset

Oculus Rift, Morpheus Immersive 3D
environment, intuitive
visualization

Text very hard to read, less
room for UI elements

Motion tracking
camera

Kinect Intuitive motion system,
immersive interface
mechanism

Requires speci�c motions,
may not recognize quick
movements

Motion tracking
sensors

Hydra Razer, Nintendo
WII controllers

Intuitive interface, utilize
more �ne-tuned
motions than cameras

Requires space to perform
the needed actions

Keyboard/Mouse Any laptop or PC Readily available Awkward to use in some
games, not ergonomic

Game controller Xbox 360 controller Large base of experienced
users

Requires memorization of
button sequences

Voice recognition Microphone Immersion method of
issuing commands

Speech recognition has a
way to go, yet

Another factor to consider with HW interfaces is the ergonomics of the
device in question. Ergonomics refers to how the HW �ts or blends with
the person using it. A more ergonomic piece of HW will in turn be easier
and more intuitive for the user to use. An example of this can be seen in the
evolution of game controllers; consider the boxy controller of the original
Nintendo Entertainment System and the later version found on the Nintendo
GameCube, the original could dig into the palms and be uncomfortable after
some time spent playing (not that I actually remember that stopping any of
us from playing, we just kept boxes of band aids nearby). However, the later
controller with the GameCube �ts the hand more comfortably and was much
easier to use with the layout of the buttons (Figure 10.1).

The SW interface systems, on the other hand, have a di�erent set of issues
that we need to consider when creating them. The GUI system should
be a natural and intuitive extension of the game-play experience on the
screen and we need to pay attention to how this system is working. As we
develop the UI we are going to have to be striving for the Goldilocks e�ect,
which is to say �nding the perfect middle ground between too much of
something and not enough of that something. The something that we
are referring to can be any of the following: text, color, fonts, images, or
buttons. At its core, a UI is there to provide information to the user without
interfering the user playing the game or accomplishing their current task
within the game.

10.2.1 HUD Design

There are two primary things to consider when constructing our HUD
overlay systems. The �rst is how the GUI exists within the game world,
or even if it does at all. Erik Fagerholt and Magnus Lorentzon have done
extensive work on the design of an interface system and how it is linked
into both the narrative and the game play of the game. In their work,
Beyond the HUD: User Interfaces for Increased Player Immersion in FPS Games,
they explore the di�erent uses of SW interfaces and created four distinct
categories, as described in Table 10.2. While it is not necessary for us to

394

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.1 Ergonomic evolution of game controllers.

create a list of which UI elements are going to be from which category,
it is important to be aware of how the UI can be used to both immerse
the player and to remove the player from the game. Creating a game
with only diegetic interface elements seems like a great idea as it will be
completely immersive and everything is a direct part of the game world
the player is interacting with. However, that type of interface will eliminate
the possibility of a mini-map with radar informing the player of the
potential location of any baddies on the current level. It will also eliminate
the capability of displaying a score or a character name, unless we are
developing a game in which the player is wearing an augmented reality
device.

The other aspect of HUD that we should be aware of is what and how we
are giving to the player. If we think back to the chapter on story and the
backstory that we created for our game project, while we have a great
desire to dump all of that information onto the player so that they can
know all of the hard work we put into this project, it is not necessary for the
player to know all of that in order to play and enjoy the game. However, it
is not only whether the player needs to know the information or not, but
it also how easy it is for the player to get the information or perform the
task that they need. Figure 10.2 provides two di�erent mock-ups of a HUD
overlay for our Sancho Panza project. As we create initial designs for these
interfaces, we need to consider what the player needs to know which very
likely may not be the same as what we want them to know. In the mock-ups
of Figure 10.2, the left version depicts what we might like them to know
whereas the version on the right provides only the information that the
player actually needs at the moment while they are playing. The di�erence
here is quite noticeable and is not always as obvious as it may seem. When
laying out your GUI overlays, always consider each element from the point
of view of the player and what they actually need to know as they are
playing the game. Also, when doing mock-ups of your interface system, it

395

The User Interface

TABLE 10.2 Di�erent Approaches to Providing Information to a Player through the Graphical User Interface System

UI Element How Used Example

Diegetic UI elements exist within and are a part of
the actual game world

Car dashboard in a racing game, HUD for
a �ight simulator, in-helmet HUD for a
space-based game

Nondiegetic UI elements that are not attached to any
object within the game world and are
not extensions of the world, traditional
UI elements

Chat interface for an MMO game,
character names appearing above the
avatar, display of a weapon selection
and amount of ammo remaining

Spatial Elements that �t within the game world
but are not a natural part of the game
world itself

Placement of text on objects to provide
information to player, waypoint trail to
follow in a game that leads to a goal

Meta UI elements that do not �t within the
game world itself but are a natural
extension of the game world

Red �ashing screen when player is shot,
the speedometer separate from
dashboard in a racing game

is not necessary to have �nal graphics in place, the goal is to get a general
idea of what you want to accomplish.

Consider the example of a crafting system within an MMO, we essentially
have three ways that we can approach such a system. The �rst one we can
give the player a text-based list of the items that they can craft and let
them click whatever it is they want to craft. In the second, we can provide
the user with a graphical representation of the ingredients that they need
for the current recipe and allow them to select and drag those ingredients
into available slots. For the third option, we can provide the player with
a recipe book of things that they can craft from which they can see what
ingredients are needed and within the crafting window itself allow the
player to search through all of their ingredients to add the ones that they
will need for a recipe they are currently constructing. The �rst example
is the easiest to use, we display what the player can do and allow them
to select it. However, this approach removes the immersion as the player
does not feel as though they are involved in the crafting per se. In the
second approach, the player has to add the ingredients needed based
upon the recipe that they have selected. This one is more immersive as
the player is involved with adding the ingredients and is also an intuitive
approach making it a good middle ground option. The last option is
cumbersome as the player will need to either remember or write down
the ingredients listed in their recipe book so that they can �nd them when
they are inside of the actual crafting window. While this may be the most
immersive of the options, displaying all recipes and ingredients whether
they can be made and are relevant or not, it is a far more awkward system
for the player to have to use.

The other things that we need to consider when constructing our interface
systems are entirely cosmetic. As game developers we have an innate
desire to do something di�erent, to create new and cool things. However,
when it comes to UI design we need to make sure that it is not a stumbling
block preventing the player from playing and enjoying our great creations.

396

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.2 Di�erent HUD overlay mock-ups, the one on the left has too much information.

Regardless of our favorite colors or favorite fonts, the needs of the game
players playing must come �rst when we design these GUI elements.
Therefore, we should consider the colors and fonts that are being used by the
interface and ask ourselves the following questions:

• Do they �ght with each other?
• Do they �ght with the game immersion and environment?
• Are they legible?
• Are they placed in easy-to-spot locations?

These concepts are demonstrated in Figure 10.3, which shows two
di�erent GUI designs that we could potentially use with our Sancho
Panza project. In this straightforward example, we can see how the
placement, styles, and colors selected for our interfaces can have an
enormous impact on the interface itself. A good rule of thumb is to ask
others what they think of your designs and actually be willing to listen to
them regardless of your personal opinion on the subject. Try not to marry
your ideas immediately, give them a chance to grow and mature before
committing to them so completely that other things must be constructed
around them. The idea for this game and the main character and overall
appearance came before the concepts of the UI system, therefore any
developed GUI must blend and work with what has already been decided
on rather than bending the previous work to match the UI.

10.2.2 Menu Design

These same principles can and should be applied to the design of menu
systems for our games. The di�erence with menu systems is that the focus
is not on what the player needs to know, but what the player needs to be
able to do from the current menu. While it may be necessary that the player
possess certain knowledge in order to accomplish the task at hand, we must
make sure that the player can do what they need to from the given menu.

397

The User Interface

FIG 10.3 UI mock-ups for Sancho, the left one does not blend as the right one does.

For�instance, we could create a main menu in which the player has the
following capabilities:

• Start a new game
• Load a saved game
• Exit the game
• Adjust the music volume
• Adjust the sound e�ects volume
• Change the screen resolution
• Change the mouse sensitivity
• Change the default controls
• View the credits for the game

As you might imagine, such a main menu screen would be too crowded. It
would be much better to o� load the adjustment options to a di�erent menu,
perhaps one named Options, and in their place on the main menu add a
button labeled Options that will load this new menu. Once again, this may
seem obvious to those that have been playing games for a while, but as we
have a desire to change things and be creative we must keep�in mind that
there are certain expectations the players will have coming in to our game
and if we change things up too much we are liable to lose them as players
due to the oddity or complexity of our GUI schemes that we employ. Based
on these concepts of interface design, Figure 10.4 provides a mock-up of
both our main menu and HUD system that we will construct for the game.
Both of these designs will provide us with some �exibility when we construct
them to tweak and modify in the game, although we will use these as a
foundation from which to build.

10.2.3 Basics of Color Theory

We have brie�y mentioned colors and fonts and we would be remise if we
did not at least touch on the basics of color theory. While it is completely
acceptable to just wing our color choices based on what looks good or

398

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.4 Final mock-ups for the main menu and in-game HUD.

feels right given the project that we are working on, there are times that
it may be useful to dive a little deeper into the selection of colors for our
interface systems and to at least be aware that there is a wealth of work
and information we can draw upon. To begin, color theory at its core is a
structure or rule set for the color and how the various colors are related
to each other. Figure 10.5 depicts a color wheel in which many of the
colors are shown in relation to other colors. Colors are divided into three
distinct groups: primary, secondary, and tertiary. With primary colors we
have our three essential color pigments that can then be blended to form
more colors. Through the blending of the primary colors we will form
the secondary colors. Finally, when we blend a secondary and primary
color we end up with a tertiary color that is generally a hyphenated name
indicating the original sources of the colors; Table 10.3 lists the essential
primary, secondary, and tertiary colors. Notice that our list of colors does not
incorporate the vastness of colors that we see in the world around us or can
even grab from a box of Crayola crayons.

399

The User Interface

TABLE 10.3 The Three Categories of Color

Color Type Colors

Primary Red, yellow, blue

Secondary Orange, green, purple (violet)

Tertiary Red-orange, yellow-orange, yellow-green, blue-green,
blue-purple, red-purple

FIG 10.5 A basic color wheel.

Note
It is important to point out that computers utilize an additive color
system and the real world uses a subtractive color system. In addition,
computers utilize RGB (Red, Green, and Blue) as their primary colors
rather than the Red, Yellow, and Blue of traditional art. For example, to
create yellow we would add red and green together and end up with
yellow when working with colors in a computer. However, the basics of
color theory hold true for either system.

As we develop our interfaces and overlays, the colors that we utilize should
harmonize and blend, both with the environment and the game and
also with each other within the interface design. We essentially have two
approaches to achieving this color harmony. The �rst is to use colors that are
neighbors to each other on the color wheel; this approach would be using
analogous colors. When doing an analogous color scheme, we will need to
use three colors that are neighbors of each other as shown in Figure 10.6. We
could also select our colors by choosing complementary colors which would
be colors that are opposite to each other on the color wheel. These two
approaches provide simple techniques that we can leverage when selecting
colors for our UI components.

Another aspect to be aware of with colors as we design our interfaces is the
temperature and emotional connectivity of those colors. Figure 10.7 displays

400

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Complementary colors

Analogous colors

FIG 10.6 Analogous and complementary color section.

the full color wheel from earlier with added temperature labels. These color
temperatures can be extremely bene�cial when designing the lighting
for an environment; by using cooler colors, we will create a more subdued
environment reminiscent of night time and would even help to set the stage
for an eerie scene as well. The hotter colors will create a more festive feeling
game world along the lines of day time. We can use these temperatures to
help a player key in on information within the interface that is vital to know
by using hotter colors, and information that is less important to focus on can
be presented with cooler colors. Another aspect of the color temperature
will impact how soothing the interface overlay is for the player; by using only
hot colors throughout the interface, it will become a very tiring experience
for the player as there is nothing soothing, the whole interface screams for
our sudden and immediate attention.

While these temperatures are useful, they also tie into an emotional response
from us when we see them. Looking at Figure 10.7 again we can also notice
the emotional labels associated with colors. We can create a feeling of threat
or hostility by using red or similar coloring within our interface. For instance,
the circle border around the image of the enemy could be red and the player
will pick up on the angry intention of that representation. It is interesting
to note that the same red color for anger and hostility can also bring about
ideas of romance and passion; it all depends on the setting in which the
colors are used. Combining this overview of color theory with the needs of
our interface systems, we can move on to the actual construction of these
within the Unity game engine.

401

The User Interface

Warm colors
Energetic, passionate, dangerous

Cool colors
Soothing, peaceful, safe

FIG 10.7 Temperature, emotions, and the color wheel.

10.3 The User Interface System of Unity
With the release of Unity 4.6, Unity has shifted from the traditional UI
system that was employed to one that has been labeled uGUI. The primary
di�erence between the original UI system and uGUI is that the �rst one was
programming based and the new version is visually based. To clarify this, with
the old interface system, the objects (buttons, sliders, text labels, etc.) were
all placed in the scene through scripted behavior. So, in order to construct
an interface it was necessary to be familiar with scripting and programming
which made it much more di�cult for artistically minded content developers
to construct the interfaces for their game projects. On the other hand,
uGUI is visually based utilizing a WYSIWYG (What You See Is What You Get,
pronounced “wizeewig”) approach that allows content-focused developers to
build the interfaces for the games by dragging and dropping elements where
they want them to be on the screen. This has streamlined development on
the interfaces quite a bit by making it a more intuitive process. Throughout
this section, we will explore the components of this new Unity system while
constructing the interfaces that we have designed in the previous section.

Download
Be sure to download the collection of assets from this chapter’s folder on
the companion website in order to be able to complete the examples in
the following sections and unzip the folder on your hard drive once you
have it: “gui_assets.zip.”

10.3.1 Building Blocks of uGUI

When constructing an interface, whether menu or HUD, the components of
the interface are all placed on a Canvas object. We can think of the canvas in
the same way that a painter would view a canvas, all of our UI elements will
be placed somewhere on a canvas, just as all of the painting for a speci�c
work of art would be placed on a painter’s canvas. The Canvas itself is a Game
Object within our game scene and as a result can be moved and repositioned
how we want and where the canvas goes, the elements that are attached to
it will go also. Canvases can also be rendered, drawn, and displayed by the
camera, in di�erent ways as listed in Table 10.4. These di�erent rendering
modes for the Canvas object allow us to create UI elements that are better
suited for speci�c needs within the game.

Just as other Game Objects within a scene have a Transform component,
a Canvas object also has a Transform component named a Rect Transform,
though it has been modi�ed to suit the speci�c needs of a Canvas. The
di�erence is that the Rect Transform not only contains position, scale,
and rotation information but also anchor points and size information.
The sizing allows us to specify a height and width for the Canvas, or for
other UI elements that have a Rect Transform (see Figure 10.8), without
changing the scale of the object. Anchor points allow us to freeze an edge

402

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

of the Canvas to a part of the screen so that even if the screen resolution
changes, the Canvas will stay relatively the same. If we anchor a Canvas
object in the center of a screen at a resolution of 1024×768 then in-game
change the resolution to 800×600, the anchored Canvas will shift to stay
in the center of the new screen as much as possible. UI elements also have
a Pivot point that we can specify and it is from this pivot point that all

403

The User Interface

FIG 10.8 The Rect Transform component for a UI element.

TABLE 10.4 The Render Modes of a Canvas Game Object

Render Mode Description Example Use

Screen
Space—Overlay

This mode is a more traditional interface system in that
it is rendered on top of everything else in the scene. If
the screen resolution changes, the Canvas will
automatically adjust as well

Score, health bar

Screen
Space—Camera

Very similar to the Overlay mode, except here the
Canvas is set at a given distance from a camera.
Generally, the camera used is not the same as the
main game view camera, as the camera used for this
overlay is only used to render the Canvas and its
elements, not the rest of the scene. The Canvas can be
drawn in 3D or 2D based on the render mode of the
camera itself (perspective or orthographic)

Dialogue system,
inventory system,
mini-map

World Space Will cause the Canvas to act just like the other Game
Objects that are within the scene. Can manually set
the size with the Rect Transform property. UI elements
will appear behind or in front of other Game Objects
based on 3D placement in the world

Names over characters
in game, speedometer
on a car dashboard

rotations and resizings would be relative to, it is di�cult to explain in plain
text the anchor points within the Rect Transform, be sure to take a look at
the video found on the companion website for a more in-depth look at this
component. With our previous work, the pivot point of the meshes was
de�ned from within the 3D application that was used to create the models
and could not be altered here within Unity.

Note
The properties of the Rect Transform for a Canvas object can only be
manually altered if the Render Mode is set to World Space for that
Canvas. Otherwise the values are set by the Canvas itself automatically
and based upon the screen resolution.

Video
Watch the video in the chapters section of the companion website for
an overview of the Rect Transform component with A speci�c focus on
anchor points: “Rect Transform.”

The Canvas forms the base that we build the remainder of the UI on.
We can have more than one Canvas within each scene as well so it
is not necessary for us to figure out how to fit everything onto one
Canvas. We can put UI elements onto the Canvas that will serve to
provide information to the player which the Unity manual refers to as
Visual Components or we can get information from the player utilizing
Interaction Components. Table 10.5 provides a list of the different types
of components that we have as a part of the uGUI system. Some of these
we have already seen from our exploration with a dialogue system
during the chapter on story development and integration. From these
components, we can construct the interfaces that we will need for our
game project.

10.3.2 Constructing the Main Menu

Using the main menu mock-up from earlier in this chapter, we are going to
go ahead and construct the full menu within Unity. We will begin doing this
by creating a new scene (File � New Scene) then immediately saving the
scene as Main Menu (File � Save Scene As). Before we get into constructing
the menu, we need to make sure that our scene is con�gured for what we will
need. Considering that we are constructing a main menu, we will have no use
for the 3D perspective camera or for the skybox that is in the scene, though
we will need the light as without light we will not be able to see anything.
We�are also going to go ahead and import all of our assets into our project
in the beginning so that we can continue to move at a steady pace through
the development and not have to go get more content (with�the exception

404

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

of Fonts). With these goals in mind, we will go ahead and get the scene
con�gured for our menu.

 1. Select the Main Camera
 a. Change the Y Position from 1 to 0
 b. Change Projection from Perspective to Orthographic

 2. In the Scene Editor click the 2D button (see Figure 10.9) to switch from
3D to 2D mode

 3. Eliminate the default Skybox
 a. Select Window � Lighting
 b. Select the small circle icon for the Skybox and change it to None

 4. Create a new folder in the Project folder named UI Images
 a. Import everything from the UI Images folder from the compressed

asset �le downloaded from the companion website earlier
 5. Import everything from the UI Audio folder into the Audio folder of

the project. The UI Audio folder is from the compressed asset folder
downloaded from the companion website earlier

 a. For the Textures, be sure to change their Texture Type from
Texture to Sprite (2D and UI)

405

The User Interface

TABLE 10.5 The Di�erent Types of UI Components in Unity

Component Type UI Component Use

Visual Panel Group components within a Canvas.

Interaction Button Allows the user to make a selection by clicking and responds to
a single click from the user.

Visual Text Displays text-based information to the user and can also be used
as a label for other components such as the text label on a button.

Visual Image Used to display a 2D image that is in sprite format and contains
custom formatting options speci�c to an image. This is used for
the vast majority of the times we want to put a picture into our UI.

Visual Raw Image Used to display a 2D image that is in a texture format, should
only be used in rare situations when the Image component
does not cover what is needed.

Interaction Slider Similar to the scrollbar except that the value range can be
speci�ed by a script to be between any values, for instance,
the number of bots in a level.

Interaction Scrollbar Decimal value from 0 to 1 that allows the user to make a
percentage selection, consider sound volume level.

Interaction Toggle Check box to turn something on/o�, useful for enabling/
disabling features.

Interaction Input Field Gets text information from the user, input can come from a
keyboard or other character selection device.

Visual Canvas Primary parent for a set of components.

Interaction Event System Primary controller object for managing user input, this will be
added automatically to the scene when a Canvas is added.

Skyboxes are materials that are rendered around an entire scene with the
goal of creating the illusion of a sky being within the game world. Since we
are building a main menu only, we do not need the skybox, so have gotten
rid of it. While these changes were relatively minor to this main camera, if
we do them at the beginning we are less likely to forget things later, as the
�nal version of this scene will contain two di�erent cameras one for viewing
the GUI we are getting ready to add and the other for viewing Sancho in
our world. uGUI elements are drawn on top of other Game Objects, so in
order to see our GUI and any Game Objects that we might want visible it
will be necessary for us to use di�erent cameras, or be very aware of this
rendering system when we design the UI to begin with, for instance, when
we construct the HUD overlay system in the next section. Now, it is true that
we could have just as easily left the skybox in the scene; however, it is not
going to be visible anyway.

Finally, notice that the imported image �les were switched from the default
Texture Type to the Sprite Texture Type. The reason for this is that when using
the Image UI object, it requires that the images we assign to it be of type
Sprite. Essentially, a texture is the whole image whereas a sprite may only be
a portion of the image within the �le. As it turns out, each one of our image
�les only contains one sprite, however, we could have packed more sprites
into each image �le if we had wanted to. This would have allowed us to
de�ne the rectangle surrounding each one of the sprites located within the
overall image �le. After making the changes to the Inspector properties of

406

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.9 Switching the Scene Editor from 3D to 2D.

the image �le, do not forget to click the Apply button to update and commit
those changes. With the assets in place that we will need and the scene is
prepared for a menu as opposed to a standard 3D scene, we are ready to
begin the construction of the menu itself.

 1. Add a Canvas object to the scene, GameObject � UI � Canvas
 a. Make the following changes to the Canvas Scaler (Script)

component:
 i. UI Scale Mode should be Scale with Screen Size
 ii. Reference Resolution should be 1024×768
 2. Add an Image object to the Canvas
 a. Right-click Canvas and select UI � Image
 b. Change name of the object to Background
 c. Change the Source Image to Sancho Main Menu
 d. Click the Set Native Size button

 3. Add an Image object to the Canvas
 a. Change the name of the object to Title
 b. Change Source Image to Sancho Panza, found within the UI

Images folder
 c. Click the Set Native Size
 d. Position the Title object in the Scene Editor near the top middle of

the screen
 e. Change the Anchor points from Center to Top Center

 4. Repeat Step 3 for a Subtitle object, using the Barataria image, place
the image below the Title as depicted in the mock-up

 5. Add a Button object to the Canvas
 a. Click the triangle next to the button to access its attached children

and delete the Text object
 b. Rename the Button object to be Play Button
 c. Change the Source Image to play btn
 d. Click Set Native Size
 e. In Rect Transform mode, grab the Blue anchors at the edge of the

bounding box and resize the button to better �t (either larger or
smaller, depending on your screen size and resolution)

 i. Hold down the SHIFT key while resizing the button to force
Unity to do a uniform resize, meaning it keeps the aspect ratio.
This also causes Unity to resize with the center point of the
object as the reference pivot point

 f. Reposition this button along the right-hand side of the screen as
depicted in the mock-up

 g. Change the Anchor points from Center to Bottom Right
 h. Change the Highlighted Color, see Figure 10.10, to a nice yellow

 6. Copy the Play Button
 a. Change the name to Credits Button
 b. Change Source Image to credits btn
 c. Move the Credits Button down as needed

 7. Repeat Step 6 for the Quit Button using the quit btn image

407

The User Interface

We began by adding a new Canvas to our scene as it is required for the
uGUI system. UI objects added to the Canvas are rendered as though they
are layers, that is to say that something listed after an element will be
rendered after, the previous object. As an example, move the Title object
in the Hierarchy panel so that it is above the Background object; notice
that the Title is no longer visible as the Background object is rendered
after the Title object is. This is an important concept to keep in mind as it
means that we can layer UI elements on top of each other to get speci�c
desired results out of the system. With the Canvas object that we added
we changed the Canvas Scaler property so that the children of the Canvas
object will scale appropriately if and when the screen resolution changes;
this is a wonderful feature as it means less work for us when porting to
other devices such as mobile and it also means it will be easier for us

408

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.10 The Highlighted Color option for a Button UI object.

to allow the user to change resolutions if we want such a feature in our
game. We have speci�ed a reference resolution of 1024 × 768 as that is our
default resolution that we are setting for the game and also the resolution
of the image that we are utilizing as a background for our main menu. This
is an easy component to overlook, and this is all that is needed in order
to have the remainder of our UI objects scale correctly with resolution
changes to our game, assuming that we have the anchor points of the
other objects set correctly.

After adding the Canvas object, we added an Image object that we named as
the Background. Within this object the background image for the main menu
is loaded and displayed. During that process notice that we needed to resize
this object to match the size of the actual image that we are using and the Set
Native Size button was the easiest and quickest way to get that size correct.
When setting Anchor points for objects within a Canvas it is best to set them
in relation to the nearest side or we can also leave them to the default center.
Keep in mind that the Anchor points determine what part of the UI object
stay put, although with our scaling system we are using it will still scale, but
stays in a relative position to that Anchor point.

The �nal item of interest on the initial Background object was to change the
Alpha from the default setting up to 255. What this has done is to remove any
transparency on this object, not on the image itself but on the overall object.
Remember, UI elements can be layered on top of each other and therefore at
times it might be advantageous to have the last rendered component slightly
transparent so that the underlying layers are visible, something we will utilize
with a portion of our HUD overlay later. However, notice that with the Alpha
set to the default midwaypoint the Background image is dim and not very
vibrant, we wanted the image to be brighter and crisper, therefore bumping
the Alpha up to its maximum value has given us a solid background image. For
the Title and Subtitle image objects, the same basic procedure was followed
that we used on the Background image object with the exception of having to
manually place where we wanted things. When moving UI objects around the
scene, make sure that the Scene editor is in Rect Transform mode as depicted
in Figure 10.11.

Placing the Button objects is very similar to the work that we did on the Image
objects already, just one thing to note on this process. Keep the Game window
at whatever resolution it is at until after you have �nished with the initial sizing
and positioning of the buttons. Working with these objects may seem a little
overwhelming at �rst, but it quickly becomes second nature and the whole
process becomes far more intuitive and natural. Whenever learning a new skill,

409

The User Interface

FIG 10.11 Rect Transform mode for the Scene editor.

the �rst time is sometimes a little rough, stick with the uGUI system and it will
become second nature very quickly. Remember to always be in Rect Transform
mode whenever you are resizing or moving a UI object around the scene. The
Button objects, unlike the Image objects, have multiple states that they can
exist in to de�ne the color tinting that is applied to the button, these states are
summarized in Table 10.6. Currently, we have overlaid a nice and bright yellow
color on our Button image so that when the mouse passes over the button the
player knows that they can click on this button if they want to.

In our main menu mock-up, we placed a Sancho object into the scene with
the intention of giving the scene a little bit of life. We can obtain this life in the
scene by animating Sancho as he stands there and waits for the user to click
one of the buttons and launch the game. Go ahead and add a Sancho object
from the Project pane into our scene and position him at�0,�0,�0. Notice that as
soon as we did this, we lost our main menu in the Game window as the camera
tied to the Sancho object has taken over for us, so we will need to make some
adjustments. Be careful as we adjust Sancho for this scene to not Apply our
changes to the Prefab object as these changes are not needed in the rest of the
game, they are only going to be needed for this main menu screen.

 1. Click the triangle to see the objects attached to Sancho
 a. Remove Music
 b. Remove Journal
 c. Remove Narrator
 d. Remove Main Camera

 2. Select the Sancho object to see his Inspector properties
 a. Disable all of the PlayMaker components as well as the (see

Figure�10.12)
 i. Capsule Collider
 ii. Character Motor
 iii. Audio Listener
 iv. Audio Source
 v. Turn on Play Automatically in the Animation component

410

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 10.6 Available States for Button UI Objects

State Description

Normal color The standard state when the button is active, but the mouse is not on it and it has not
already been clicked.

Highlighted
color

Whenever the mouse enters into the area de�ned by the button this state is triggered
and this color tint will be applied to the button. This is a good method of letting the
player know that they can click on this if they wish to.

Pressed color If the user has clicked this button, we can provide a visual cue to the player so that they
know through this color tint, for instance, that the music can be on or o� and the
button with the pressed color (probably darker) is the one that is currently selected.

Disabled color We can disable buttons and this color will allow a visual cue to the player that this
button is not a viable option, consider the grayed-out buttons we often see in menus.

 3. Select the Canvas object
 a. Change Render Mode to Screen Space � Camera
 b. Assign Main Camera to the Render Camera

 4. Use the Move, Scale, and Rotation modes to position Sancho as
shown in the mock-up or in Figure 10.13

We have added Sancho to our scene began by removing all of the parts
that we are not going to need for this version of Sancho, which turns
out to be an�awful lot of what we have already done in the previous
chapters. We�also had to reposition him to better fit the spot that was
allotted for him and while it is true that earlier we said not to scale
meshes but to change the scale factor instead, for this one situation
there is nothing wrong with breaking the rules to make it easier for us,
as long as we do not apply these changes to the prefab and therefore
throughout the rest of our game. The interesting aspect, at this stage,

411

The User Interface

FIG 10.12 Modi�ed Sancho game object.

was that we could not actually see Sancho at first until after we changed
the Render Mode of the�Canvas object. As long as it was set to Screen
Space�� Overlay, the Canvas was rendered on top of everything else that
is in the scene, this will be useful for our HUD overlay, but for this main
menu with a nontransparent background image that caused problems.
Therefore, by�changing it to be rendered to a specific camera, Sancho
became visible�and could be seen as long as his Z value is between
that of the Camera (�10) and that of the Canvas (90) and the starting
Z value of 0 is�definitely between those two numbers. We can now
run the game and�see our wonderful main menu in action with idling
Sancho watching�us expectantly and if we resize the Game window
then everything scales with it as it should; this is a very good start to
this menu and when we get to the PlayMaker section we will add some
functionality�to it.

10.3.3 Constructing the HUD Overlay

Recall our basic mock-up for the HUD overlay that we plan to utilize
within the game play of our project. For the construction of this overlay,
we will begin with the information box in the top left-hand corner that
has Sancho’s current health and his number of remaining lives. This box
will also contain a picture of Sancho’s head so that the player will be
able to visually recognize that the information being displayed is for
Sancho and not for some other character on the screen. We have already
imported all of the image files that we will need and set them to be Sprite
(2D�and�UI). The images that we will use in this stage of development
will be: Character Info, Health Bar, Sancho Head, and Sancho Life. We are
going to use images for the representation of the number of lives that
Sancho has remaining, specifically a little picture of Sancho with his hand
up in the air. Make sure to load the Barataria scene that we were working

412

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.13 The �nal position of Sancho and view of the main menu as it stands at this point.

with prior to the construction of the main menu. With our preliminary
pieces in place we are�ready to begin.

 1. Add a Canvas to the scene and change the name to HUD Overlay.
 a. Make sure that the UI Scale Mode is set to Scale With Screen Size

and Reference Resolution is 1024 × 768.
 2. Add an Image UI object to the Canvas and change the name to

Sancho Info.
 a. Change the Source Image to Character Info.
 b. Click Set Native Size and turn on Preserve Aspect Ratio.
 c. Resize and reposition the object as necessary so that it �ts well in

the top left corner of the Game view.
 d. Change the Anchor point to Top Left Corner.

 3. Add an Image UI object to the Sancho Info object name it Sancho
Head.

 a. Change Source Image to Sancho Head.
 b. Resize, reposition, and change Anchor point to Middle Left.

 4. Add an Image UI object to the Sancho Info object name it Sancho
Health.

 a. Change Source Image to Health Bar.
 b. Resize, reposition, and change Anchor point to Middle Center.
 c. Select the Color bar beneath the Source Image and change the

color to Green.
 5. Add an Image UI object to the Sancho Info object name it Life 1.
 a. Change Source Image to Sancho Life.
 b. Resize, reposition, and change Anchor point Center.

 6. Duplicate Life 1 two times to create Life 2 and Life 3.
 a. Reposition the images as needed.

 7. Figure 10.14 depicts the �nal hierarchy layout for these objects and
Figure 10.15 shows the �nal positioning of these objects within the
Game view.

413

The User Interface

FIG 10.14 Hierarchy relationships of the Sancho Info UI overlay.

The construction of our HUD overlay was built o� of the knowledge that we
gained when constructing the main menu system from the previous section.
This time, we did not do a Camera Overlay for the Render Mode of the
Canvas, however. Keeping the Render Mode of the Canvas to the default of
Screen Overlay allows the Canvas to lay on top of the whole screen, whatever
the size of the screen. Keeping in mind that our HUD system is just going to
put some UI elements in speci�c places on the screen and attempt to not be
obtrusive, the Screen Overlay is the best option for us as we can utilize only
the portions of the Canvas that we will speci�cally need.

The images that we created were created in the same process as the Images
for the Main Menu system; the only new aspect in these steps was the use
of the Color property for the health bar that we have created. The original
health bar image is white, with some transparency around it; this color was
selected with the end goal of allowing us to change the color of the health
bar within Unity as opposed to being stuck with one color. Also, when
changing the Color property of an Image object, keep in mind that what we
are really doing is applying a tint of that color to whatever the image is. In the
case of a white image, which means that we are applying a new color tint to a
white background or changing the color to that new color tint. However, if we
apply a tint to the info box itself, we get that tint overlay on top of whatever
colors are actually within the image; see Figure 10.16 for a demonstration of
this di�erence.

Other than this new feature, we have seen the creation of Images and
manipulation of both their position and Anchor points during the work on

414

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.15 Final positioning and arranging of Sancho Info UI overlay in Game view.

the main menu. Our Sancho Info box is now laid out the way that we would
like it to be and it scales very well with new resolutions; the functionality of
changing the health bar and the lives will come when we add PlayMaker to
these systems. Our next step will be to get the quest journal that we had
thrown together real quick in an earlier chapter functioning as a proper
member of our new HUD overlay; before continuing, be sure to download the
font �le found at the companion website.

Download
Download the “roger-white_milwich.zip” �le from this chapter’s folder at
the companion website. This is the font created by Roger White that we
will be using for text in our UI; it is the same font that was used for the
creation of the image �les that have been used previously in this chapter.

 1. Select the Sancho object in the Hierarchy.
 a. Delete the Journal object that we created earlier and attached to

him. When you do this, there will be a warning message that we are
losing the Prefab connection, see Figure 10.17, just click Continue.

 b. Click the Apply button on the Sancho object to apply our changes
to the prefab itself, the Sancho object in the Hierarchy should
return to a blue color now.

 2. Create a new folder in the Project panel and name the folder Fonts.
 a. Import the “MILWICH_ font” that was downloaded before

beginning these steps.

415

The User Interface

FIG 10.16 Applying a purple tint to the Character Info image, notice the output is not the same as the tint.

 3. Create an Image UI object and attach it to the HUD Overlay.
 a. Rename the Image object to Quest Info.
 b. Change Source Image to Quest Box.
 c. Change the Alpha transparency value to around 175.
 d. Position the object near Sancho’s feet, something like Figure 10.18.
 e. Change the Anchor points to Middle Bottom.

 4. Create a Text UI object and attach it to Quest Info.
 a. Change the name from Text to Quest Display.
 b. Provide some sample text for testing, we are using:

 i. This is a test quest.
 ii. Found 0 of 7 things.
 c. Select the Font property and change it to MILWICH_.
 d. Change Font Style to Bold so that the text stands out a little

sharper.
 e. Leave Font Size at the default value and change Line Spacing to 3.
 f. Change the Alignment of the Text to be Centered, see Figure 10.19.
 g. Click the check box for Best Fit.
 h. Change the Color property, we are using a reddish-maroon kind of

color.
 i. Reposition the text object within the Quest Display for best �t.
 j. Change the Anchor points to Center.

We now have our Quest Display system in place and ready to be dynamically
updated when Sancho is given a quest to complete during the course of
the game. The Image object that we used as part of this process was simply
there to provide a background for the text to show up against. Dropping the
Alpha value down has added some transparency into the image so that it
does not stand out as sharply; however, this is a personal decision and if you
prefer yours without the transparency then by all means set the Alpha back
up to 255.

The Text object is new, granted we used it very quickly in an earlier
chapter, but here we have done a fair amount of changing and tweaking.
Our main goal with the changes that were made was to make sure that

416

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.17 The Prefab warning dialogue that appears when moving objects out of a prefabbed asset.

417

The User Interface

FIG 10.18 Positioning of the Quest Info object beneath Sancho.

FIG 10.19 The Alignment properties for the Text object.

the text will rescale with the rest of the game if the resolution of the
game display were to change. When dealing with fonts and font sizes,
rescaling can sometimes be something of a nightmare; however, Unity
has streamlined this whole process for us by handling all of the number
crunching in the background. The key was to use the Best Fit option
for the text. With this property turned on, Unity will actually ignore the
properties that we have specified as Font Size. In other words, Unity
will dynamically determine the best Font Size for the text to fit within
the bounding box of the Text object. But, Line Spacing will need to be
specified by us, to see this in action you are encouraged to change the
Line Spacing value and see how it impacts the text whereas the Font
Size has no impact on the final display. Our Quest Info system is now in
place and ready for PlayMaker to send it some new information to display.
Notice that this is a cleaner system than the one that we had hacked
together in our chapter on story. We will get both of these to update
dynamically when we come to the PlayMaker section of this chapter; the
addition of the enemy info box for the HUD Overlay is being left as an
exercise for the end of the chapter.

10.3.4 Polishing the Dialogue Work

In one of our earlier chapters we throw together a hasty dialogue system
in order to demonstrate methods of bringing story into our game projects.
This time we are going to rework that dialogue system so that we can take
advantage of the uGUI tools that are available to us and correct many of
the frustrating issues that we had with our �rst take at dialogue in our
game project. We will import the Teresa prefab object into our Barataria
scene and place her somewhere within the town or perhaps just outside
of the town. If you did not make a prefab object of her, load the Chapter�6
Test scene that we created where all of the dialogue work was done before
and drag the Teresa object from the Hierarchy panel down into the Project
panel (make sure to put her in our Prefabs folder) and then we can reload
the Barataria scene and drop the prefab of Teresa into here. We will begin
by creating the UI system for the dialogue and then in our PlayMaker
section we will make some corrections to Teresa to bring the whole system
together.

 1. Add a Canvas object to the scene and name it Dialogue Overlay.
 a. Set the Sort Order (beneath the Canvas Render Mode) to 1.
 b. Set the UI Scale Mode to Scale with Screen Size and default

resolution of 1024 × 768.
 2. Attach an Image object to Dialogue Overlay.
 a. Rename the image to Dialogue Box.
 b. Change Source Image to Quest Box.
 c. Resize and reposition this box to dominate the screen, see

Figure�10.19 for �nal positioning of UI objects.

418

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 3. Attach an Image object to Dialogue Box.
 a. Rename the image to Speaker Image.
 b. Position the image near the top left corner of Dialogue Box.
 c. The default size is �ne.

 4. Attach a Text UI object to Dialogue Box.
 a. Rename the text to Speaker Name.
 b. Provide some sample testing text.
 c. Position to the right of Speaker Image (see Figure 10.20).
 d. Change the Font to MILWICH_.
 e. Change the Font Style to Bold and Italic.
 f. Turn on Best Fit.
 g. Change the Color to a nice bright green (0, 255, 0).

 5. Attach another Text UI object to Dialogue Box.
 a. Rename the object to Speaker Words.
 b. Provide some sample testing text.
 c. Change the Font to MILWICH_.
 d. Change the Line Spacing to 3.
 e. Position the object below Speaker Image and Speaker Name.
 f. Resize the text box so that it takes up quite a bit of room within

the Dialogue Box; remember this is where all of the spoken words
from the speaker will be displayed.

 g. Change the Alignment to Center.
 h. Turn on Best Fit.

 6. Add a Button UI object to Dialogue Box.
 a. Rename the object to Response 1.
 b. Change Source Image to Quest Box.
 c. Resize and reposition the Button as necessary to match

Figure�10.20.
 d. Change the Highlighted Color to a bright yellow or some other

color that you like.

419

The User Interface

FIG 10.20 The �nal positioning of all the UI elements for the Dialogue system.

 e. Click the triangle next to the Button to access the attached Text
child object.

 i. Provide some sample testing text.
 ii. Change the Font to MILWICH_.
 iii. Change the Line Spacing to 3.
 iv. Change the Alignment to Center.
 v. Turn on Best Fit.
 7. Duplicate Response 1 and rename the new copy to Response 2.
 a. Reposition Response 2 below the �rst button.

There is only one new option that we are using in this dialogue system that we
have not used in our previous UI work: the Sort Order on the Canvas. The Sort
Order for the Canvas tells Unity which order to render multiple Canvases at
runtime. The rendering will occur starting at the lower numbers and rendering
new Canvases on top until it has gone through all of the values in the Sort
Order. This is allowing us to render this Dialogue Canvas on top of the current
HUD Overlay that is already on the screen. This is very easy to implement and
provides a very nice capability for when we want various Canvases rendered
in di�erent sequences for whatever e�ects we may be trying to accomplish.
You may have noticed that when this was rendered, by playing the game, that
we can still see the display from PlayMaker listing which state each object is�in.
This display is OK for now as it is not impacting performance in anyway and
we will be turning o� all of those FSM displays soon enough. We are leaving
them in there for now for testing purposes as it helps to know what state a
given object is in while trying to do some testing of our FSMs.

Other than that, we have seen all of these properties with our previous UI
work. With our Dialogue system now in place and ready to be brought to life
by PlayMaker, we will go ahead and disable this Canvas so that it is no longer
visible, just select Dialogue Overlay in the Hierarchy and then click the check
box next to the Canvas component as shown in Figure�10.21. We will enable
this Canvas component through PlayMaker while the game is running
whenever we need this Canvas to display dialogue.

10.4 Updating the User Interface
with PlayMaker

We have completed our preliminary work with the UI systems in that we have
them set up the way we would like and they are displaying within the game.
The buttons are also responding to the user by changing colors when the
mouse cursor passes over them, but any functionality beyond that is simply
not there until we create some FSMs within PlayMaker to add the behaviors
that we want. We will focus on providing the necessary behavior systems
to the three UI elements that we have constructed. If you have not done so
already, you will need to add a Spider asset into the scene (near the bridge
to guard it would be a good location) so that we can con�gure and test the

420

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

health system of Sancho, the life system we can test by running out into the
water and drowning. Other than that, we will need to remove some of the
work that we did in a previous chapter with the dialogue system, but most
of that will be modi�cation rather than full on removal. We will begin with
the Main Menu then move on to the HUD Overlay with Sancho’s info box and
wrap this chapter up with the Dialogue system and some further updating to
the Quest Info object within the HUD Overlay.

10.4.1 Responses on the Main Menu

We have already done some basic work with button responders in the
previous chapter with the hacked together dialogue system. We will be

421

The User Interface

FIG 10.21 Disabling the Dialogue Overlay system.

utilizing the same approach here as responding to a button click is always
done the same way; the whole question is what you do with the button
responses, or more speci�cally how do we want the game to respond when
the user makes a speci�c selection. For our main menu, we have provided
the user with three options that they can select from, these are diagrammed
in Figure 10.22. In order for us to launch a new scene, we will need to bring
in a new PlayMaker action that we have not used previously, though there
will be some minor �ddling that we will need to do for it to work.

Note
If you are missing the uGUI Button On Click Event in the next section be
sure to download it using the Ecosystem updater:

• Select PlayMaker � Addons � Ecosystem.
• In the search box enter “u gui button on click.”
• Download and add the only action that will appear in the search

results.

If you are missing the Ecosystem updater, double-check the steps on
downloading and installing it found in the chapter introducing Unity and
PlayMaker (Chapter 3).

 1. Create an empty game object and name it Menu Controller.
 a. Add an Audio Source component to this object.

 2. With Menu Controller selected open the PlayMaker editor.
 a. Add an FSM and change its name to Mouse Responder.
 b. Change State 1 to Idle.
 c. Create two new states named: Exit and Play.
 d. Create two custom events: Play Clicked and Quit Clicked.

422

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Start the game

Display credits screen
Credits button clicked

Quit button clicked

Play button clicked

Main menu

Exit the game

FIG 10.22 A design diagram of the logical �ow for the main menu system.

 e. Select the Idle state.
 i. Add the Play Clicked event and connect it to the Play state.
 ii. Add the Quit Clicked event and connect it to the Exit state.
 iii. Add a uGUI Button On Click Event.
 A. Change Game Object to Specify Game Object.
 B. Drag the Play Button from the Hierarchy onto the red

None selection �eld, see Figure 10.23.
 C. Change Send Event to Play Clicked.
 iv. Repeat the process for the Quit Button using the appropriate

button and event.
 f. Select the Play state.

 i. Add an Audio Play action to play a button clicking noise from
the audio assets we imported during the Audio chapter.

 ii. Add a Wait action to wait for the duration of the Audio �le that
you have selected, ours is 1 second long so the Wait action is 1
for Time with Real Time Checked.

 iii. Add a Load Level action.
 A. For the Level Name type in the name of the game level,

in our case it is “Barataria” make sure it is spelled and
capitalized the same as in the Project pane.

 g. Select the Exit state.
 i. Add an Audio Play action to play a button clicking noise from

the audio assets we imported during the Audio chapter.
 ii. Add a Wait action to wait for the duration of the Audio �le that

you have selected, ours is 1 second long so the Wait action is
1�for Time with Real Time Checked.

 iii. Add an Application Quit action to this state.

423

The User Interface

FIG 10.23 Assigning the Play Button to the Button On Click Event action.

The uGUI Button On Click Event action is developed for the sole purpose
of responding to the user clicking on one of the uGUI Button UI objects
that are available within Unity. It is possible to put this action within an
FSM found on the Button object itself, however, by creating one master
controller object such as we have, there is one centralized location to look
for any errors and also to add any updates to the work later. This central
approach can be very bene�cial when constructing the internal control
mechanisms for a game and since it is utilizing an empty object we do not
have to worry about it being visible somewhere within the game and it will
be easy to �nd by searching through the game objects listed in the scene
hierarchy.

We will begin our exploration with the Play state and its new action Load
Level. However, before we get to the Load Level action notice the Wait
action that is being used to force the execution of our actions within this
state to pause long enough for our button clicking sound to �nish playing.
Remember, if the button click sound that you select is not loud enough, or
too long or whatever, you can load it up within Audacity and make some
corrections to it then export it back out and into your game project. Also,
you can �nd the duration of the Audio by selecting it in the Project pane
and viewing its properties in the preview pane of the Inspector panel
(Figure�10.24).

The Load Level action will allow us to specify a level for Unity to load. When
entering the Level Name to load it is vital that the name entered matches
exactly with the name of the level that we want to load, we can see the
name of the level that we want to load by looking through the Project
panel and reading the scene names. Generally speaking, the process
of loading a level involves loading a new scene into memory and then
deleting the current scene once the load is complete. However, there are a
couple of interesting properties to look at that de�ne how the loading of a
new scene behaves.

The �rst of these is the Additive option, which will load the new level
without removing the current level. This allows us to load new content into
our current level; this is a good technique if we have a huge world and we
want to load new sections into the current scene when the player nears the
boundaries.

The other option is the Async check box which will load the new level in
the background which means that we could continue playing within the
current level or we could add a loading progress bar to the current level.
Once a traditional load level has begun, the current level will no longer do
any updating until the new level is ready to take its place, so by using the
Async option we could avoid this and still have the current level functional.
We could also combine both of these options and load a scene in the
background that will then be added to the current scene.

There are a couple of things to keep in mind when dealing with scenes
and loading them. They use memory. That may seem like a simple

424

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

statement; however, many beginning game developers will overlook this
situation and end up with games that require huge amounts of memory
that can only run on specialized systems. If we are to port our game
project over to a mobile device, we have to be very aware of the memory
that is available to us on such a device and recognize that we may not
be able to load huge virtual worlds that dynamically load into memory
for�the players to explore. There is also the potential case of having
memory leaks occur with scenes being loaded using any of these other
techniques.

The last option of interest for us with the Load Level action is to have the
object initiating the scene change to either be destroyed or not be destroyed.

425

The User Interface

FIG 10.24 The properties of an audio �le shown in the Inspector panel.

Remember our earlier discussion about controller objects within game
scenes. These objects can do more than just handle user input; they can also
be responsible for storing data relevant to the game play, for instance the
player’s name or the current health of the player. When we use the Don’t
Destroy On Load option, that object will not be destroyed when the new
scene is loaded, you can think of this as an Additive scene load of adding the
new scene to the current object that is not being destroyed. At the moment
we are leaving all of these options turned o�.

For the Exit state, we used a new action that has only one purpose and that
is to quit a currently running game. There are no properties or options that
we can set to customize how this thing behaves; any customization�that
we want done would have to be performed before we use this action. As
an example, rather than going straight to the Exit state, we could have
popped up a question to verify if that is what the user actually wants to do
or not.

Before we are able to test this menu system, we will have to edit the
build settings for our project. The way that the Load Level commands
work is that they look at the list of scenes that are included with the build
settings�for the project to find the level to be loaded. The action does not
go through the Project folder to find the correct scene. This means that
we can have many scenes that we are using for testing and development
but only include the scenes that we actually need in our game project
build settings. To configure these settings follow the following
procedures:

 1. Select File � Build Settings
 a. Drag the scenes from the Project panel into the Scenes In Build

list�box.
 b. Be sure that the �rst scene you want loaded is at the top of the list,

see Figure 10.25.

With these steps out of the way, we can go ahead and test our project
to make sure that it works. For our first test, we will launch the project
the way that we have been by pressing the Play button at the top of the
button controls within Unity itself and this will launch the game within
our Game view. When we click the Play button on our Main Menu, we
get the button clicking noise that we want and then after a brief pause
the�main level of our game does load; however, it may appear to be
quite a bit darker than it was when we were playing it before. This is a
bug within the new Global Illumination system and will be patched soon
there is no doubt. The built version of the project will display the lighting
correctly it is only when the scene is loaded within the in-editor game
view that the lighting is darkened; we can correct this by changing the
following setting for the Barataria scene (or any scene for that matter):
Windows�� �Lighting � Lightmap Tab � Uncheck the Auto check box
and then click the Build button, see Figure�10.26. Once this has been

426

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

completed a new folder will be created within the Scenes folder for
each�scene that we are creating the lightmap snapshots for as shown
in�Figure 10.27.

The Quit button cannot test within the Unity editor; however, if we go ahead
and create a full build of our game we can test to make sure that the Quit
button is working as we had intended it to. Creating a test build can be done
with just a couple of mouse clicks so that we can verify that the quit button is
working as we would like it to.

 1. Select File � Build Settings.
 2. Click the Build button at the bottom of the dialogue.
 3. Browse to a location to save the executable �le, generally we create a

folder called Builds that is within the root folder of our Project (in this
case the Sancho Panza folder).

 4. Provide a �le name for the build.
 5. Click the Save button.

427

The User Interface

FIG 10.25 The list of scenes to include in the build of the project.

 6. After the build is complete, double-click the new executable �le to
launch the game.

 7. Select a screen resolution for testing the game, see Figure 10.28.
 8. Once the game loads, click the Quit button to verify that the game

will exit.
 a. WARNING: Do not click the Play button as we currently have no

way to get back out of the game.

After doing our preliminary testing, we can see that the game does exit as we
want it to and we can also see that we can start the game when clicking on
the play button. Although, if we are testing this by running the built version
of the game, we ran into a fun little problem in that once the game has
loaded into Barataria we cannot exit the game, though hopefully everyone
heeded the warning in the steps and did not actually test the Play button.
We�can remedy this by adding a controller object into the Barataria scene

428

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.26 Creating a Lightmap snapshot for our scenes.

that is sitting there listening for the Escape (ESC) key to be pressed and when
it is pressed the game exits out or returns to the main menu. This solution is
demonstrated in the following steps.

 1. Load the Barataria scene.
 2. Add an empty Game Object and rename it to Game Controller.
 3. Open the PlayMaker editor.
 a. Add an FSM and rename it to Exit Menu (or Pause Menu).
 b. Create a custom event named Escape Pressed.
 c. Rename State 1 to Idle.
 d. Add a new state named Exit and select this state.

 i. Add an Application Quit action.
 e. Select the Idle state.

 i. Add the Escape Pressed event and connect it to the Exit
state.

 ii. Add a Get Key Down action.
 A. Select Escape from the drop-down menu for Key.
 B. Select Escape Pressed as the Send Event.

429

The User Interface

FIG 10.27 New folders that store the lightmap snapshots for each scene.

10.4.2 Updating the Overlay

We will begin the process of updating the HUD Overlay by getting it
to correctly display the number of lives that Sancho has remaining.
After getting the life display to work correctly we will have Sancho get
beat up�by a Spider and get the Health bar to decrease appropriately.
To begin�with the life display on the overlay, we will start with the life
management system that was added to the health system of Sancho as an
exercise in one of the previous chapters. The solution of which is depicted
in Figure 10.29. Also, a new variable was introduced to keep track of the
number of lives that the player has left, this variable is of type int and we
named our variable lives. The essential logic in this structure is outlined
as�follows:

• When the player’s health reaches 0 the player will die.
• Play the death animation.
• Disable all of the movement animations for Sancho.
• Subtract 1 from the current number of lives.

• Check the current number of lives.
• If the number of lives is above 0 then the player can respawn.
• Otherwise the player is dead and the game is over.

430

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.28 The game launch dialogue screen.

Our basic approach to updating the life display in the HUD is going to be to
display the appropriate number of life images as diagrammed in Figure 10.30.
Notice that within this design structure, we will only have to disable one of
the life images each time. The reason for this is that in order for Sancho to
be down to only 1 life, as an example, that would require that the last run
through this part of the state machine Sancho was at 2 lives. Since he was
at 2 lives last time and we turned o� the third life image the last time, then
this time when Sancho is down to 1 life we know that we only have to turn

431

The User Interface

FIG 10.29 The life management system added into Sancho’s Health system.

Disable Life 3

Disable Life 2

Disable Life 1

Lives = 1

Lives = 0

Check Sancho’s
number of lives

FINISHED

FINISHED

FINISHED

Start the respawn
process

Lives = 2

FIG 10.30 The logic design for updating the life images on the HUD.

of the second life image as the third is already disabled from the previous
run�through this design.

 1. Make sure that you are within the Health FSM for Sancho.
 2. Add three new events: 0 Lives, 1 Life, and 2 Lives.
 3. Create a new state named Update HUD.
 4. Connect the Keep Going event from Check Lives to Update HUD.
 5. Create three more states named: Lives 2, Lives 1, and Lives 0.
 a. Add a FINISHED event to each of these and connect to the

Respawn state.
 6. Within the Update HUD state add the three new events and connect

them to the appropriate state, see Figure 10.31 for an overview of this
placement.

 7. Select the Update HUD state.
 a. Add an Int Compare action.

 i. Integer 1 should be the lives variable.
 ii. Integer 2 should be 2.
 iii. Equal is the 2 Lives event.
 b. Add another Int Compare action.

 i. Integer 1 is the lives variable again.
 ii. Integer 2 is 1.
 iii. Equal is the 1 Life event.
 iv. Less than is the 0 Lives event.
 8. Select the Lives 2 state.
 a. Drag the Life 3 Image UI object from the Hierarchy panel into the

Actions panel of the state.
 b. Select Set Property from the pop-up menu that will appear when

releasing the object.
 c. Select active from the drop-down menu for property.

 9. Repeat step 8 for the Life 2 and Life 1 Image UI objects in the scene.

To test this system, we can take Sancho and run out into the water until
he drowns and see if the number of displayed life images changes within
the HUD overlay. Every action that we are using within this new addition
to the state machine, we have used in previous states for other purposes.
At this point we can really begin to see how these actions are forming the
building blocks of the behaviors for our games. We are using the same
actions that we have before, but are putting them together in di�erent
sequences or with di�erent values to get the desired results. The trick
to becoming a good programmer is recognizing that every program is
constructed of the same building blocks it is just a case of how we put
those pieces together, understanding the underlying logical �ow is
absolutely vital, and by this point in the book we are starting to put the
pieces together in our minds. Eventually, we will add more actions to our
knowledge base as our programming skills continue to grow and improve
through practice.

432

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Next on our list for the HUD Overlay system will be to get the health
bar of Sancho to decrease as he is attacked by an enemy, in this case, a
spider. Earlier in the book you were challenged to place a spider on the
bridge to act as a guard and respond to Sancho’s presence. The focus
at the time was adding audio elements to the spider and its reactions
as well as modifying the prefab slightly for our purposes by disabling
the patrolling system (which can be turned back on at any time that
we want that behavior put back in). We will go ahead and play with the
spider because it is already hungry to hurt Sancho if it can. It may be
easier for construction and testing to either move Sancho closer to the
spider or�move the spider closer to Sancho, either one will save us time
during�testing.

Before we jump into PlayMaker we are going to consider what it is that we
want done. The health bar that we have displayed in the HUD, we want
to work as a percentage bar. Therefore, a fully healthy Sancho will have
the�health bar all the way up and green, a half healthy Sancho will have the
health bar halfway down to the left and yellow and a sickly Sancho will have
the health bar nearly all the way down to the left and red. This is a common
scheme in games that use health bars, but to make sure we can see a
visualization of this in Figure 10.32.

433

The User Interface

FIG 10.31 The new states inserted into the Health FSM for Sancho.

Note
By this point your Barataria Hierarchy panel may be starting to get a
little complex and di�cult to manage. There are a couple of things that
can help us manage this Hierarchy panel as our scenes get more and
more complex. The �rst is the search bar at the top, we can enter what
object we are looking for and objects matching that criteria will be
the only ones to show up in the Hierarchy panel. The second option is
to use Empty Game Objects as folders for categories of game objects
also shown in Figure 10.33. Be aware, set your empty objects to 0, 0, 0
especially when nesting UI objects.

It turns out that the Image UI object already has a way to do what we
want built-in, we just need to take a look at these options. Select the
Sancho Health UI object that we created earlier and change the Image
Type from Simple to Filled, see Figure 10.34. A Filled Image Type is one
that we can change how much of the image is visible. We can modify the
fill of the image either horizontally, vertically, or radially. Our Health Bar
is horizontal, so utilizing a Horizontal Fill Method will allow us to change
how much of the image is visible based upon the Fill Origin which we

434

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.32 The Health bar of Sancho in action.

will set to Left. Now, if you adjust the Fill Amount slider you will be able
to see the health bar image fill to the appropriate amount based on the
Fill�Amount.

We now know what we want to change within Unity, but before jumping
into PlayMaker we need to consider how we are going to get these
changes to occur. As we have seen earlier, it is much easier if we take our
time and design our solutions before actually trying to implement them,
this becomes even more important when we are editing state machines.
Before we start adding or removing things from our state machines, we
need to take a few moments to consider exactly how we want the new

435

The User Interface

FIG 10.33 The search bar and Empty objects in the Hierarchy panel.

FIG 10.34 The options for a Filled Image Type.

system to function without worrying about exactly how that is done
within PlayMaker.

• After Sancho has gotten hurt by something update the health bar.
• Change the �ll amount to be the same as Sancho’s new

health.
• If Sancho’s health is below 66% change the color of the bar to

yellow.
• If Sancho’s health is below 33% change the color of the bar

to�red.
• After Sancho has died reset the color and �ll amount on the

health�bar.

Following on our text-based list we see that we want the �ll amount for the
health bar to be set to the value of Sancho’s health whenever Sancho gets
injured. However, we created Sancho’s health as an int and those are whole
numbers only. As we played with the �ll amount property we noticed that
it was not whole numbers but rather values between 0.0 and 1.0 or a �oat
value. When using a value between 0 and 1 this is oftentimes referred to as
a normalized value which is to say that the value has been converted to a
value between either all on (1) or all o� (0). An example of this would be if we
normalized our color values so that a completely red color would be 1, 0, 0
rather than 255, 0, 0 (using RGB values). The easiest way to normalize a value
is to divide the current value by the maximum that it could be, for instance,
255 divided by 255 would be 1, or in the case of a health bar 80�divided by
100 would be 0.8. A full diagram of this system can be seen in�Figure 10.35
which helps us to visualize these changes that we are getting ready to make.

436

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Update the Health Bar
Normalize Sancho Health
Set Fill Amount = Sancho Health

Change Health Bar image color to yellow

Sancho Health < 0.34

Change Health Bar image color to red.Continue with Sancho’s Health System

FINISHED

FINISHED

FINISHEDFINISHED

Sancho Health < 0.67FINISHED
Player got hurt

Update HUD
Sancho has died
Reset the Health Bar

FIG 10.35 Design to update the Health Bar in the HUD overlay.

 1. Select the Health FSM within Sancho.
 a. If you have not done so previously, set the maxHealth variable

to�100.
 b. Add a new variable of type �oat named healthBar.
 c. Add a new event named Change Health Color.
 d. Create three new states named Update Health Bar, Yellow Health

Bar, and Red Health Bar, see Figure 10.36 for these new states.
 e. Connect the FINISHED event from the Hurt state to the Update

Health Bar state, see Figure 10.36 for this placement.
 f. Select the Update Health Bar state.

 i. Add a FINISHED event and connect it to the Health Check
state.

 ii. Add a Change Health Color event and connect it to the Yellow
Health Bar state.

 iii. Add a Convert Int To Float action.
 A. Int Variable is health.
 B. Float Variable is healthBar.
 iv. Add a Float Divide action.
 A. Float Variable is healthBar.
 B. Divide By is 100.
 v. Click the Lock button along the top, see Figure 10.36.
 A. Find and select the Image (Script) component within the

Sancho Health UI object from the Hierarchy panel.
 I. Drag this component into the Action panel for

PlayMaker.
– Select Set Property from the pop-out menu that

appears when releasing the mouse.
– Select �llAmount from the Property drop-down

menu.
– Select the healthBar variable for the Set Value.

 vi. Add a Float Compare action.
 A. Select healthBar for Float 1.
 B. Enter 0.67 for Float 2.
 C. Set the Less Than event to Change Health Color.
 D. See Figure 10.36 for the �nal construction of this state.
 g. Select the Yellow Health Bar state.

 i. Add a FINISHED event and connect it to the Health Check
state.

 ii. Add a Change Health Color event and connect it to the Red
Health Bar state.

 iii. Repeat dragging of the Image (Script) component from the
Sancho Health object into this Action panel.

 A. Select Set Property.
 B. Select color � color for Property.
 C. Select a Yellow color for Set Value.

437

The User Interface

 iv. Add a Float Compare action.
 A. Set healthBar to Float 1.
 B. Set 0.34 for Float 2.
 C. Less Than Event should be Change Health Color.
 h. Select the Red Health Bar state.

 i. Add a FINISHED event and connect it to the Health Check
state.

 ii. Repeat dragging of the Image (Script) component from the
Sancho Health object into this Action panel.

 A. Select Set Property.
 B. Select color � color for Property.
 C. Select a Red color for Set Value.
 i. Select the Update HUD state.
 i. Add a Set Property action to set the �llAmount property for

Image (Script) of Sancho Health to 1.
 ii. Add a Set Property action to set the color property for Image

(Script) of Sancho Health to green, see Figure 10.37.

The truly tricky part of this sequence of actions is getting that Set Property
action to work exactly the way that we would like it to. By turning on the Lock
feature in the PlayMaker editor, we are able to click around the Hierarchy, or
Project for that matter, and select other objects without having the focus of
the PlayMaker editor window change. This way we can actually select the

438

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.36 Lock selection in the PlayMaker editor and overview of the modi�ed Health System.

Sancho Health object and grab a component out of it. The key here is that
we are wanting to change a property, or set a property value, for that speci�c
component, not for the object itself. Once we are able to drag that into our
Actions pane, we can get the exact property that we are wanting to change
and get it set to whatever value that we want. This is an easily overlooked
feature of PlayMaker, being able to directly set the properties of components
like this and the key to it is using the Lock button and also dragging that
component into our Action pane.

The normalization of the health value for Sancho so that it can be used by
the �ll amount property is done by utilizing the Float Divide action and

439

The User Interface

FIG 10.37 The modi�ed Update HUD state.

dividing by 100. 100 is used for the divide by value because that is the
maximum health that we are currently allowing Sancho to have. We cannot
insert the maxHealth variable in there because that variable is an int and the
Float Divide action requires a �oat type variable. We could have converted
the maxHealth value to a �oat, but to keep this as brief as possible we just
hard coded a value. You are strongly encouraged to change this around
so that we are dividing by the maxHealth value, which can be changed in
the Inspector to whatever value we want. By using that value instead it will
always normalize correctly without having to return to our FSM and change
this value.

Finally, the �ow for our color changing system relies on a fall through kind
of logical structure. The best way to see this �ow is if we were to reverse
the Float Compare actions that we are using in the various states. To begin,
if the current health is greater than 0.66 then keep the current color of the
health bar, which is the default color of green. Otherwise we will change
the color to yellow unless the current health is below 0.34 at which point
we will go ahead and switch to our �nal color of red. All of this is reset to the
default values when the HUD is updated after Sancho has died and before he
actually respawns. It is important to get those resetting actions at the top of
that state because all actions are performed sequentially from top to bottom
and if we leave the Update HUD state before resetting those values then they
will not get reset.

Video
A video has been posted to the companion website that provides a visual
walk through of the steps for getting the updating of Sancho’s HUD to
work correctly, it is named: “Updating Sancho Health.”

We can now do some basic testing on this system and will that when we
charge toward the spider it will notice us and come get us and with each of
its attacks on us our Health Bar drops a little and even changes color at the
appropriate times. Our HUD overlay is now updating based upon actions that
are occurring during game play.

10.4.3 Integrating the Dialogue System

For our �nal section, we will modify the original dialogue system to work with
our much cleaner system in the new UI that we have constructed over the
course of this chapter. We will begin by placing Teresa into our scene, if she
is not already in there, and put her somewhere over by the entrance into the
town on the island. In this example we will demonstrate the changes needed
for Teresa, or any other dialogue object, and how we can update our quest
information to keep the player properly informed as to what they should be
doing. We will begin by reviewing the previous work on the dialogue system
for Teresa.

440

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Within the Teresa object we had placed a Canvas object to serve as the
temporary UI for the dialogue. The thinking at the time was that by attaching
it to Teresa the dialogue would display wherever Teresa is and while this did
work and is a very strong option, we now have a di�erent dialogue system
in place within our HUD overlay. There are two advantages to switching to
our new system, the �rst is that any object can use it that wants to. And the
second advantage is that it turns out to be much cleaner than what we had
done with Teresa; it is easier to read and easier to interact with. Based on this,
we will go ahead and delete the Canvas object that is currently attached to
Teresa then we would only have to switch over the object references within
the PlayMaker state machines for Teresa and everything should work just as
it�did before.

 1. Select the Teresa object from the Hierarchy and open the PlayMaker
Editor.

 2. Reassign all of the variables as shown in Figure 10.38.
 3. Notice that we have created a new variable named speaker_image,

this variable is of type Object � Unity Engine � UI � Image.
 4. In the Start state for Teresa’s Starting Dialogue FSM add a Set Property

action.
 a. Target Object is speaker_image.
 b. Property is Sprite � Sprite.
 c. Select the Teresa Head image from the UI Images folder.

With the new assignments for the variables within our dialogue system
from previously, it now works just as it did before, except better as it
is easier to read and easier to see and generally easier to interact with.
Through the use of those variables that we created in our earlier chapter
and the careful design work we did when constructing this conversation
system, bringing it into a new scene did not involve too much work. We
did make one addition to our state machine, we have added a picture of
Teresa to the dialogue just in case the player forgets who he is talking
to. Now we need to connect this updated system with the new Quest
Journal on our HUD Overlay. For this, we will return to the Collecting state
machine that we constructed within Sancho�for handling the collection
of�sheep.

 1. Create a new event named Start Sheep Quest.
 2. Create the variables listed in Table 10.7.
 3. Create a new state named No Quest.
 4. Right-click this new state and select Set as Start State to make it the

new start state.
 5. Add the Start Sheep Quest transition event to the No Quest State.
 6. Connect the Start Sheep Quest transition to the Sheep Quest state.

441

The User Interface

442

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 10.38 The new variable values for Teresa.

 7. Select the No Quest state.
 a. Add a Bool Test action.

 i. Bool Variable is isSheepQuest.
 ii. Is True is Start Sheep Quest.
 iii. Every Frame should be checked.
 b. Add a Set Property action.

 i. Target Object is quest_display.
 ii. Property is text.
 iii. Set Value is “Go �nd Teresa.”
 8. Select the Sheep Quest state.
 a. Add a Convert Int to String action.

 i. Int Variable is �ndSheep.
 ii. String Variable is need_text.
 b. Add a Convert Int to String action.

 i. Int Variable is numSheep.
 ii. String Variable is found_text.
 c. Add a Build String action.

 i. String Parts is 5.
 ii. Element 0 is “Found.”
 iii. Element 1 is found_text.
 iv. Element 2 is “of.”
 v. Element 3 is need_text.
 vi. Element 4 is “sheep.”
 vii. For separator hit the space bar to put a space between each

one of the elements.
 viii. Store Result is quest_text.
 d. Add a Set Property action.

 i. Target Object is quest_display.
 ii. Property is text.
 iii. Set Value is quest_text.
 9. Select the All Sheep state.
 a. Remove the Debug Log action.
 b. Add a Set String Value action.

 i. String Variable is quest_text.
 ii. String Value is “Return the sheep to the pen.”
 c. Add a Set Property action.

 i. Target Object is quest_display.
 ii. Property is text.
 iii. Set Value is quest_text.

While it was necessary for us to add quite a few new variables to this
previously created state machine, we did not need to do too many other
modi�cations to it. We began by switching the default starting state to be No
Quest where we can set the default message to appear in the Quest Display
for the player, in this case the default is “Go �nd Teresa.” This message will
be displayed to the player whenever they have completed a quest to remind

443

The User Interface

them to go back to her and get a new quest for the reclaiming of Barataria.
We can add other Boolean variables into this state to launch into other quests
for the player to engage in, such as the Go Find Dapple quest that the player
is actually assigned by Teresa at the moment. For testing purposes, we will go
ahead and turn the isSheepQuest variable to True so that we can verify that
this does indeed work. Beyond this, we have added the actions to convert
the current number of sheep found and the number of sheep needed to be
found into Strings and then constructed a string message to display on the
screen to the player. Finally, once the player has found the sheep, we are
going to change the quest message to inform the player that they need to
get the sheep back to the pen in town. Before testing this system, be sure
to assign the value for quest_display in the Inspector. This quest can be
triggered at the end of a conversation with Teresa in which Teresa will reach
over and turn the isSheepQuest, or isDappleQuest for that matter, Bool
variable to true and o� it will go. Also, notice that with this construction the
sheep will not follow Sancho unless he is actually on that quest.

Video
To help with the modi�cation of the quest journal for the sheep quest,
we have created a video named “Sheep Quest UI” that can be found on
the companion website, as some of these variables can be a bit tricky to
deal with.

10.5 Summary
Throughout this chapter, we have seen the power of the new uGUI system
included with Unity 5. This graphical approach to creating UIs makes it much
quicker and more intuitive to put together the systems that we want. Also,
through the graphical construction, it is a lot easier to bring the visions of the
interfaces to life as we want them to be. We also looked at how we can use
these tools to construct di�erent types of interface systems ranging from
menu-based systems with our main menu and also our dialogue system
to the HUD overlays that we constructed for the main game play of our
project. As we have seen, UIs can be a lot of fun to construct though they

444

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 10.7 The New Variables Needed in the Collecting FSM of Sancho

Variable Name Variable Type Variable Purpose

found_text String The number of sheep currently found as a string.

isSheepQuest Bool Whether or not we are on the sheep quest.

need_text String The number of sheep we need to �nd as a string.

quest_display Object � Unity Engine
��UI � Text

The Text UI object that we will be displaying quest
information to.

quest_text String The string that we will display to the user with
quest information.

do often involve utilizing 2D assets that have been created outside of Unity,
generally speaking, Photoshop is the tool of choice for these activities (see
the companion website for a video demonstrating the use of Photoshop
for the creation of UI elements that were used in this chapter). Through the
techniques that we looked at in this chapter, we can construct more complex
interface systems that respond to di�erent types of dynamic information
through FSMs within PlayMaker.

Download
You can �nd the �nished scenes for this chapter in the complete project
package on the companion website, the scene name is: “Chapter10_�nal.”

Vocabulary
Hardware interface
Software interface
Virtual reality
HCI
Ergonomics
UI
GUI
HUD
Diegetic UI
Nondiegetic UI
Meta UI
Spatial UI
Menu-based systems
Color theory
Primary color
Secondary color
Tertiary color
Analogous colors
Complementary colors
uGUI
Rect transform
Canvas UI object
Text UI object
Button UI object
Image UI object
Normalize value

Review Quiz
 1. What are the di�erences between a menu-based system and a heads-up

display?
 2. What are the advantages and disadvantages of a motion camera system

and a motion sensor system?

445

The User Interface

 3. Why is uGUI easier to use for content-based creation than the traditional
Unity UI system?

 4. Why does a Button UI Object contain a child Text UI Object by default?
 5. What is the advantage of using images that have been colored white for

UI elements within Unity?
 6. If a treasure chest in the game world can hold 15 objects and it currently

contains 8, what would the normalized value be for how full it is if we
wanted to display this fullness as a vertical image bar?

Exercises
 1. Create a loading game text box that is displayed once the player clicks the

Play button on the Main Menu.
 2. Using the techniques to construct the info box for Sancho Panza,

construct a similar info box for the Spider object guarding the bridge
across the river.

 3. CHALLENGE: See if you can come up with a way to abstract this spider
info box so that it can be shared by any other enemy assets that are
encountered by Sancho during game play, you will �nd the graphics that
you need for this already imported in your project from when the graphic
assets were imported earlier in this chapter.

 a. HINT: Consider the work that we did with the dialogue system.
Construct the spider info box as a part of the HUD Overlay just as we
did for Sancho. Disable the object by default and when the Spider
detects Sancho and begins a charge at him, turn on this info box.
With the box turned on, use a PlayMaker FSM inside of the Spider to
set the image of the info box to belong to the spider and also to set
the health to be that of the spider. When the spider dies, disable this
info box. With this done, we could use these same steps for any other
object to utilize this info box.

 4. Create some new quests for Sancho to complete and get them working
with our dialogue system and also with the quest display system.

 5. Add a splash screen of your design to the project, it does not need to be
anything fancy at this point as the graphics can be modi�ed at a later
point, utilize the following basic logic:

 a. When the splash screen starts have it display your design and play an
audio fanfare of your selection for a few seconds then automatically
launch the main menu.

 b. You could create a looping system by having the main menu return to
the splash screen after a few minutes of the player not selecting any
of the buttons.

 6. Create the Credits menu screen with a button to return to the main menu.
 7. Using what you have learned from the Main Menu and also from the

Dialogue system, construct a new dialogue system to appear when the
player clicks to quit the game asking the player if they are sure they
want to quit. If yes, then go ahead and exit, otherwise return to the
main menu.

446

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

 8. Add a pop-up message that appears when the player runs into deep
water and provide a text message to the player as to why they are losing a
life, perhaps something like “I cannot swim.” While we are at that, we can
go ahead and remove the text message that we were displaying to the
console window on this event.

Design Document
In this addition to the Sancho Panza design document, we have added our
design ideas for the menu systems as well as the HUD displays within the
game.

Download
The updated version of the Sancho Panza design document
can be downloaded from the companion website as:
“DesignDocument_chapter10.”

Consider your design document that you have been working on thus far and
add the following to it:

 1. Design a main menu mock-up for your game project.
 a. Consider what the player can do from the main menu.
 2. Design a HUD overlay for your game project.
 a. Consider what information needs to be displayed to the player.
 3. What other UI systems will you need in your project?
 a. Create mock-ups for any of these other systems.

447

The User Interface

�3�D�J�H���,�Q�W�H�Q�W�L�R�Q�D�O�O�\���/�H�I�W���%�O�D�Q�N

CHAPTER 11

Testing, Tweaking,
and Publishing

We are nearing the end of our introduction to game development, and
Sancho Panza is almost ready to be let out of the house. In this chapter,
we will look at three distinct yet interrelated topics: testing, tweaking,
and publishing. We will look at the wealth of options that Unity provides
for us to build our game projects so that others may be able to enjoy
and possibly even buy them. However, before we get too excited about
getting our game into the hands of gamers everywhere, we will need
to spend some serious time testing it and even though we have done
some testing during the whole development process, we need to go
into more depth and discover how to test a game. With our game nearly
completed, we cannot go back and rebuild it just to add a new feature
or two; however, if those new ideas will fit within the framework of what
we have�already done, then there is nothing wrong with making a tweak
here�and there, or even polishing up some of the work that we have

449

done to iron out the kinks. We will explore all of these topics throughout
this�chapter.

• What Is Testing?
• How to Approach Testing
• Finding and Tracking Bugs
• Tweaking the Game
• Supported Build Platforms
• Building and Publishing Projects

11.1 What Is Testing?
Testing a game is more than just playing a game. At �rst glance it is easy for
us to think that we can test our game simply by playing it and discovering
what does not work within the game. There are three distinct approaches
that we will look at with regard to testing: play-through testing, unit testing,
and break testing. These each serve di�erent purposes and will require
di�erent approaches to successfully test our game to ensure that it is ready
to get out in the general public. Another piece to consider in regard to
testing is who does the testing. For some of the testing, we as developers
can go ahead�and do the testing ourselves, however for other parts of
testing we will�really need someone that has not been working on the game
to take a look at it with a fresh pair of eyes, so to speak, and see what they
discover. We will begin our look at testing by getting our project ready and
exploring�bugs.

To get our project ready for others, or even us, to better test it, we are going
to turn o� those PlayMaker state labels that have been showing up in the
game. Until now, they have been bene�cial for the testing and building that
we have been doing, but now that we are going to get serious about testing
we need to get these o� the screen. One reason to get these o� the screen
is to make sure that no one thinks they are bugs; for instance, in Figure 11.1
we can see that labels are appearing in front of the dialogue box containing
our conversation with Teresa. It is only natural to assume that it is a bug since
from a player’s perspective there should not be any white text like this in
front of the dialogue box. Another reason to get rid of these labels is that
they do clutter the space somewhat and make it more di�cult for us to see
details within the game during game play.

Elimination of the state labels during game play can be done by disabling
the PlayMakerGUI (Script) Component within the PlayMakerGUI Game Object
that is located within the current scene as shown in Figure 11.2. Ofcourse this
means that we will have to go to any other scenes, such as the Main Menu,
and disable the PlayMakerGUI (Script) component in there as well. However,
disabling this one component is quicker and easier than going through
each individual Game Object and manually turning o� the PlayMaker state
labeling system. If we were to disable the Game Object itself, rather than just

450

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

451

Testing, Tweaking, and Publishing

FIG 11.1 The various state labels blowing through our dialogue box with Teresa.

FIG 11.2 Disabling the PlayMakerGUI Game Object.

the component within the Game Object, then there is a strong possibility
that PlayMaker will add that Game Object back into the scene because it will
not detect the Game Object there, after all it is disabled. Generally speaking,
this should not happen, but if we were to update the PlayMaker �les we are
using in our project it would de�nitely happen. With this disabled, we will no
longer see those white text labels throughout our game world and are now
ready to advance to hunting some bugs.

11.1.1 Hunting Bugs

The ultimate goal of play testing is to �nd and discover any bugs that may
be hidden within the game and to help tweak and polish the game for �nal
release. A bug can be a �aw in the game that causes the system to behave
incorrectly; we might even say the system behaves unexpectedly. A bug is
always caused by a �aw within our programming logic. Notice that we are not
saying an error in our programming logic, because technically speaking an
error in our logic would actually prevent the game from running. Code errors,
syntax errors, or PlayMaker errors are detected by the compiler when getting
the game ready to run and are then displayed with the red exclamation
point in the Console as we have encountered at various times during this
project. A bug, rather than being an error, is a �aw in the logic that we have
constructed. Something to keep in mind with computer software, including
games, is that it only does what it has been told to do or programmed to do.
We can expand on this to recognize that any bug in the game is the computer
doing exactly what we told it to do, but apparently what we thought we were
telling it to do and what we did tell it to do are not the same thing.

When testers encounter a bug, in whichever testing stage they are in, the
bug needs to be documented and the tester needs to ensure that they
understand what is going on. When documenting a bug the following
guidelines should be followed:

• Provide a screenshot of the bug or a video capture of it.
• Describe in detail what the bug is, focusing on what went wrong.
• Describe in detail what you did to cause the bug.
• Does the bug happen every time you try to make it happen?

The idea that a picture is worth a thousand words makes a screenshot
or video capture of the bug in action absolutely vital. Trying to verbally
describe what the screen looks like is nowhere near as e�ective as taking
a quick screen capture of the bug in action and then using Photoshop or
something to circle and highlight the areas that have bugged out in the
game. The description of what caused the bug is more important than we
may �rst realize. Remember that as testers we are looking at bugs from
the player’s perspective not from the developer’s perspective. Sure, as a
developer we may have no idea why the game is behaving as it is, but as
a player we should absolutely know that when we do X in situation Y the
game will always do Z. We can test this, we can verify this, and then we can

452

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

tell the developers this. Now, the developers can look at doing X in situation
Y and try to �gure out what is happening.

Keep in mind that testing our game project needs to be a thorough and
procedural process in which we focus on certain types of bugs or certain
aspects of the game in order to �nd any bugs that may be hiding in there.
It is very possible, even likely, that a couple of bugs here and there will slip
through our testing process and still live within the game that we ultimately
release. While it is important to try to �nd as many bugs as possible, it is
equally important to recognize that some are going to slip through the
cracks, but we can �x them later through game patches or updates.

11.1.2 Play-Through Testing

Play-through testing is playing through a game from start to �nish with the
goal of making sure that the game can be completed. While conducting a
play-through test, any side quests or side goals of the game are not tested. For
instance, a play-through test of Super Mario Bros. would not involve gathering
all of the coins and exploring as many of the warp pipes as possible, it would
be a blaze through the game from start to �nish. With Sancho Panza, a
 play-through test would be going right through the game without exploring
the whole island, because the whole island is not necessary for completion of
the game. For instance, while conducting a play-through test it is very possible
that the testers would never discover that Sancho dies if he goes too far out
into the ocean, as going out there is not relevant to completing the game.

When conducting this type of a test, it is best to use people that are familiar
with the game as we need them to blow through the game as quickly as
possible just to verify that the game does work and that it can be completed.
Someone that has never seen the game would not be a very good selection
for a play-through tester as they do not necessarily know the quickest way
through the game. It is also important to note that while doing this we
cannot utilize any cheats or disable any settings and features. It would be
much easier to do a play-through test if we disabled Sancho’s health system
so that we did not need to worry about him getting hurt and causing a
delay as we respawn and run back to where we were. At �rst glance, it seems
as though this would actually help with a play-through test, but what if
there is an issue with a challenge later in the game in which Sancho does
not get damaged by something that should be hurting him, this should be
discovered by a play-through as we want to guarantee that the game can be
completed as intended, which also means challenging to the player through
the main game play as intended.

When we think of testing a game, we generally mean play-through testing.
However, as we have seen this type of testing is not just about playing the
game, the focus is to make sure that the game can be completed in a direct
manner. So much of what we do while playing games is not relevant to
play-through testing. All of the exploring, wandering, crafting, and gathering
that we might do during a game, if they are not directly required in order
to complete the game do not need to be tested during a play-through test.

453

Testing, Tweaking, and Publishing

During a play-through test, it is not necessary to make sure that all of the
checkpoints on the island of Barataria work or that the player cannot sneak
past any arti�cial boundaries to get to other areas of the map. The only
purpose of play-through testing is to make sure that the player can begin the
game and complete the game by doing exactly what is required to complete
the game, all of the other stu� gets picked up in our other testing categories.

11.1.3 Unit Testing

Where play-through testing focuses on the start to �nish game, unit testing
focuses on individual chunks or units of the game. This is best done by
breaking the game apart into chunks to test. We have been doing this, to an
extent, during much of our development process thus far. As we would design
a solution and implement the given design we would then test it. For instance,
if I press the space bar does Sancho jump? If the answer is “yes” then that
individual unit is considered to be working correctly. For unit testing we must
test each possibility and each situation to make sure that it works as intended,
this can be a very tedious process. Consider, for example, if we are working on
a fantasy RPG game and silver weapons are required to kill certain creatures we
will need to test each silver weapon on the various types of creatures that are
supposed to be hurt by them. But, to go with that, we will also need to test all
of the nonsilver weapons to make sure that they do not hurt these creatures.
This would come down to a few hours of doing nothing but �nding and
attacking these creature types with all of the di�erent weapons to make sure
the correct ones work and that the others do not. Only after every weapon has
been tested with the werewolf and veri�ed to work correctly could we call that
unit tested and veri�ed and move on to the next silver weapon creature. As
can be seen from this example, unit testing is less about playing the game and
more about making sure that each part of the game works as it is supposed
to. When it comes to unit testing, to-do lists become our best friend as they
help us stay on track and also guarantee that when a particular unit is tested
and veri�ed it has actually been tested thoroughly. Another example of unit
testing is providing a diagram of a dialogue system to the testers and having
them verify that the dialogue in the game works as it was diagrammed to do so
making sure that the correct options are displayed at the correct times with the
correct responses from the other characters. Some aspects of the unit testing
were already completed as we developed each individual unit; for instance,
after completing the “go �nd Dapple” conversation system, we should have
tested it to make sure that each option appeared when it should and led to the
appropriate response by Teresa.

There is an interesting thing about unit testing in regards to the construction
system within the Unity game engine. If our prefabs have been constructed
correctly and work as they should, then whenever that prefab is used again it
will work correctly as well. For instance, it is not necessary for us to test every
individual sheep that is placed in the game to verify that they follow Sancho as
desired. The reason for this is that the sheep are instances of the prefab object so
if the prefab is working correctly and if we have properly utilized those prefabs
in the creation of our other sheep (speci�cally in the addition of our other

454

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

sheep into the scene) then there is no reason that the other sheep will not work
correctly. The same thing goes when using tags for our collision systems, as long
as every object is properly tagged then they should work correctly within the
state machines that govern their collision behavior. But, this is the whole point
of unit testing, to verify that everything is added to the scene correctly and that
everything does have the proper tag. It is easy to skip over unit testing working
under the assumption that it worked correctly when we developed it; however,
unit testing is a method of double-checking ourselves and making sure that we
did not overlook something such as accidentally retagging one of the sheep to
something else. The best approach to this topic is to give your testers a list of
things that you want them to test and let them go verify that they work correctly.

We are going to create a unit list of the sheep quest system and test it to
make sure that it is working as desired. We have already tested for the basics
during development in that if we collide with a sheep it will follow us, so we
know that is working. However, what other things could we test to be able to
validate this complete unit?

• Can the player collect sheep before getting the quest?
• Can the player collect more than the required number of sheep?
• Do the sheep follow Sancho over a long distance?
• Do the sheep get lost?

After thoroughly testing this unit system we have found that it does work but
we are also getting some odd behavior out of it. For instance, if the player
goes out to the beach or even into the water, the sheep will follow as they are
supposed to, but they �oat in the air, as can be seen in Figure 11.3. This bug is

455

Testing, Tweaking, and Publishing

FIG 11.3 It is the super �oating or �ying sheep.

caused, from the player’s perspective, by collecting a sheep so that it will follow
us and then running out into the ocean. It is also caused by collecting the sheep
and then running to an area of the island that is lower than where the sheep was
originally located at and collected from. Remember, testing is about �guring
out what causes the bug from the player’s perspective and reporting that to
the developers. As testers we should not be trying to solve the problem for
the developers just telling them what it is, the fact that in this case we are both
tester and developer does not mean that we should alter this too drastically.

We have also discovered that if we run through the town or around the
town, the sheep pass right through the walls of the town and keep following
Sancho. This can be seen in Figure 11.4. We have documented the cause of
this problem as collecting the sheep and then running away in such a way as
to put an obstacle between us and the following sheep. When this occurs the
sheep just walk right through the obstacle. As developers, we may already
know the solution to this, or the cause within the game, but as players we do
not know what the solution is, only how to make the bug happen.

Finally, during unit testing this, we noticed that if we run out into the ocean
and die, the sheep will continue to follow Sancho, it will take them awhile to
return to where Sancho is located at his given new location after respawning.
Whether this is something that we want to change or not is entirely up to
us as the developers of the project. But as testers of the project, it is our
responsibility to document this kind of behavior. If we as the player found the
behavior to be odd, then perhaps that type of behavior system is a detraction
from playability and fun. This is something that could be brought up with

456

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 11.4 Sheep that ignores walls and other buildings.

other testers to get their feedback on this aspect of the game and decide how
to proceed from there.

11.1.4 Break Testing

The goal of break testing is to intentionally try to break the game. This is
the most di�cult type of testing for the developers themselves to do. The
reasoning for this is that we are so familiar with the game and the systems that
we have constructed that we will naturally play the game within those systems
and rule structures. It is very di�cult for us to think of things other than what
the game is programmed to do to try. The best break testers are those that
have not played the game before, or at the very least have not been involved
in the actual development of the game. This is because they will come to
the game and immediately start trying to do things that we as developers
have not even considered. There are a couple of di�erent approaches that
can be taken when conducting this type of testing. One of these is to simply
let people play the game and see what happens. It is interesting how many
things gamers will come up with to try within your game project that never
even occurred to you to consider during development.

For an example of break testing, we will return to our sheep quest that we
worked with on the unit test in the last section and see if we can break that
system somehow. Before we begin, we can try to come up with some o�-the-
wall type of things just to try and see how the game will respond, such as

• What happens to the sheep if Sancho dies?
• Can we get the sheep stuck on something or someplace?

Beyond this we turn our testers loose with the goal of breaking this quest
system and see what they come up with. Notice that both of the questions
that we have proposed as possibilities that could break this aspect of the game
were already discovered during our unit testing in the previous section. This
showcases how there is an overlap between these types of testing procedures
that we work on within our game projects. Another approach to this is that we
can explain the quest to the player so that they know what they are supposed
to do and then tell them to break it; in the case of my kids, this is one of their
favorite things to do. We will need people to think outside of the box on this
one and just try o� the wall stu� to see if they can break the game that we have
constructed. One of the most common things that crop up from break testing
will be map holes, which allow a player to slip through the map at certain places
and get to locations that we are not wanting them to get to. These are �xed by
looking very closely at our colliders on objects and also at the boundary systems
that we create to surround the player and keep them in the regions we want.

11.2 Fixing and Tweaking
After having explored some of the types of testing and applying them
to our Sancho Panza project, we have discovered a couple of bugs that
will need to be �xed and also a couple of issues that should be tweaked

457

Testing, Tweaking, and Publishing

in some way for smoother game play. In the following sections, we will
go through�solutions to the documented bugs found earlier in this
chapter. When �xing bugs, it is important that we turn the game loose
to the testers�again and have them verify that the solution works. The
veri�cation�process involves repeating the steps that initially caused the
bug to occur and then trying to see if we can get it to occur through some
other means.

There is another aspect of validation testing though and that is testing the
other parts of the game to make sure that our �x for this one problem did
not go o� and break some other part of the game. For the bugs that we will
be working on that should not be a problem; however, the more complex
and interdependent the game system becomes the more likely that a
seemingly minor change in one location will cascade into a major change
elsewhere.

11.2.1 Fixing the Following Sheep

Our game testers have sent us some issues involving the sheep following
Sancho around. To recap, the �rst issue is that once a sheep has been
collected, if Sancho wanders to a part of the island map that is lower
vertically than where the sheep was found, the sheep will �oat in the air.
We are now ready to put our developer’s hat back on and as soon as we
do so we recognize that gravity is not acting on the sheep. This is a result
of constructing our initial character systems on a �at surface and not
unit testing for gravitational forces at that point in time. As the project
continued to develop this just fell through the cracks, granted in this
situation it was intentionally allowed to fall through the cracks to serve
as a teaching tool for debugging our project. With the Sancho character,
gravity was handled by the CharacterMotor script that we added in order
to add jumping to our game. As a result of adding that script, we got
gravity for free without necessarily trying to get it. We can verify this by
raising Sancho vertically o� of the ground of the island and starting the
game, notice he falls down to the ground. Based on that, we will need to
try something di�erent.

Gravity is a part of the physics system within Unity. This system can be
added to a Game Object by adding a Rigidbody component, which can be
found in the Physics section of components. Figure 11.5 displays the default
properties of a Rigidbody component. We have provided a description of
each of these properties in Table 11.1. For our needs with this project, we are
going to keep all of the values on their default setting, though we will tinker
with the Rotation Constraints by hitting the check boxes to turn all of them
on to get a feel for how they work since the Constraints can be an easily
overlooked aspect of the component and yet have an enormous impact on
the behavior.

After adding a Rigidbody component and enabling the Rotation
Constraints, we will need to add a collider component to this sheep

458

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

object as well. Notice that we already have a collider object attached to it;
however, this one is set as a Trigger which means that it will allow objects
to pass through it. With the trigger turned on and the Rigidbody added,
during game execution the sheep object will drop through the ground and
keep on falling forever. The gravity is working correctly; however, there is
no collider to prevent the sheep from passing through the ground, this is
the reason for adding a second collider to our sheep. We could convert our
current collider back to a regular collider by removing the Trigger option;
however, then the collider will prevent the player from being able to run
through to collect the sheep. How we want this to behave is entirely up to

459

Testing, Tweaking, and Publishing

FIG 11.5 The properties of a Rigidbody component.

TABLE 11.1 The Properties of a Rigidbody Component

Property Purpose

Mass De�nes how massive an object is.

Drag Amount of air resistance to apply to the object.

Angular Drag How much air resistance impacts rotation of the object.

Use Gravity Toggle to use gravity on the object or not.

Is Kinematic Toggle to use the physics system or not, if Is Kinematic is turned on then the
object only moves based on the scripted movement, not on the physics
interactions with the environment.

Interpolate Di�erent methods of how the movement occurs as a result of the Rigidbody,
experiment with the other settings to try to smooth out any movement that is
too jerky during runtime.

Collision Detection Fast-moving objects will pass through each other without registering a collision,
these settings can be changed for faster-moving objects, Continuous Dynamic
is best for these.

Constraints Disable movement or rotation that is a result of physics interactions with this
object.

us as the game developers, but for this example, we will go ahead and add
in a secondary collider object�on�the�sheep.

 1. Select the Flu�ySheep prefab object in the Project panel.
 a. Click Add Component � Physics � Box Collider.
 b. Change the Y value of the Center property to raise the collider so

that it is centered on the sheep, for our example a value of 0.55
works well.

 c. Decrease the X and Z part of the Size property so that the Collider
is smaller than the Trigger is, values of 0.5 seem to work fairly well.

To begin, when we add a Collider component to an object it will be centered
around that object’s pivot point, which in the case of the sheep (and most
animated characters) is going to be on the ground between their feet. If we
leave our collider there, then the sheep will be �oating above the ground
because the collider will be hitting the ground quite a bit below where the
sheep is actually located at. The other part that we have changed is the size
of the collider; if we leave it at 1 then it will completely overlap the Trigger
volume and thereby defeat the whole purpose of having a separate collider
box from the trigger. The Y value is �ne at 1, but the X and Z de�ne the box
around the sheep and dropping it to 0.5 gets a very tight box that snugs up
against the sides of the sheep very well.

We are now ready to do a quick unit test on these changes before sending it
back to the testers for veri�cation testing. Remember, we intentionally checked
the Freeze Rotation boxes to be able to see how these impact the behavior of
the physics system on the object. We will go �nd a sheep and get it to follow
us back down toward the ocean to replicate the bug that had been reported.
Figure 11.6 shows what occurs now. The sheep is doing much better than it was
before; however, it seems as though it is standing on a hidden platform that
is extending out from the surface of the island. As it turns out, that is exactly
what it is doing, that hidden platform is the collider box as shown in Figure�11.7.
What is occurring here is that the Rigidbody is creating a gravitational pull
on the sheep bringing it down to the surface of the land; however, since we
have frozen the rotation, the box collider stays in its original orientation. If we
unfreeze those Rotation Constraints, we will notice that the sheep will nicely
fall onto the surface of the incline just as we would like it to. This brings up an
interesting situation with di�erent shapes of colliders; for instance, a spherical
collider will roll down this incline as though it were a ball, perhaps good if we
want Jill to tumble down the hill, but we do not want our sheep to do that at all.
By getting this collision system to work correctly, we have also �xed the issue of
the sheep running straight through a wall or other obstacle.

11.3 Building the Game
In this section, we will look at the various stages of development that a video
game passes through while exploring the many options that Unity provides
for us to create executable versions for various�platforms. We�must build

460

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

our game for others to be able to play it outside of the Unity game engine,
which would be necessary for other people to be able to play our game. We
will conclude this section with a step-by-step example of building a game
project with Unity. For our example build of the Sancho Panza project,
we are going to construct a Windows Standalone that will be ready to be

461

Testing, Tweaking, and Publishing

FIG 11.6 The invisible platform beneath the sheep.

FIG 11.7 The collider box of the sheep extended out of the surface, the hidden platform.

published and distributed for others to play. Through this we will also take
a look at most of the settings for building this version of the project. These
settings are shared across the di�erent platforms that we can construct a
deliverable for.

11.3.1 Game Development Life Cycle

The life cycle of a game project de�nes the various stages that a game
passes through and what it is capable of at those points. For instance,
as people we have a life cycle similar to baby, toddler, child, teen, young
adult, adult, elderly, and dead. Granted the last stage is not one that
we look forward to but it is a part of the life cycle that we experience.
As a baby, there are things that I cannot do, such as drive a car. In game
development our projects pass through a very similar set of stages during
their lifetime. Table 11.2 depicts the stages of a game project. Notice that
each stage has very unique expectations from it and we need to be careful
to not expect too much from an alpha version of a game. Every project

462

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

TABLE 11.2 The Life Cycle for a Game Project

Stage Deliverables Purpose

Concept High-Concept
Document

Basic outline of the game idea, this is the elevator speech for the
game, just the facts.

Design
Document

Full documentation for the game idea and how to build the game.

Development Alpha Initial playable version of the game, this is proof of concept of basic
game mechanics, generally has rudimentary graphics and no audio.

Beta Most graphics and audio are in place, game is fully playable on
the main storyline with some side quests and other elements still
in development.

Gold Game is ready for release, any bugs still in at this point in time will
have to be repaired via patches following release. This version of
the game is packaged and sent to distributors.

Testing Bug Reports Testers work with the Alpha and Beta versions of the game trying
to �nd bugs and issue bug reports to the developers for �xes.

Release Patch Once the game is released, we can continue to �x known bugs or
new bugs reported by players through patches that we develop
and release for the game.

DLC New content can be released as downloadable content (DLC) that
players can purchase to add new content and life to the game.
As developers we can utilize DLCs to add life to our games
following its release.

Abandonware There comes a point in time when there will be no further DLCs for
the project, no more patches, no more support, and the game itself
will not be available for sale through mainstream channels. At this
point, the developers have abandoned the game, though they still
hold the intellectual property rights to the game (copyright).

that we work on will go through this same life cycle, although some of
them may have an untimely death as they are cut o� before growing to full
maturity.

Note
We are never completely done with a game until it has been abandoned
either by us or by our company. As long as the game is still out there
and being supported, we are working with it to some extent; however,
there comes a point in time where continuing to maintain the game is
no longer a viable option and it might be best to let the game go to the
great console in the sky.

Within each of the stages of a game’s life, there are deliverables. A deliverable
is a product of some type; it is something that is produced and created
during that stage and can then be given to someone else. While testing and
development are technically listed as distinct stages, they work very closely
together as we have seen in this chapter.

11.3.2 Build Options in Unity

Unity provides us with a wide range of platforms that we can build our
games for. Our �rst thought when glancing through a list like the one
shown in Table 11.3, is that we will just go ahead and build it for all of
the platforms, this way more people can get and play our game, which
would be good. Well, not all platforms will be a good �t for our game; not
to mention that way back when we were working on our initial design
document for our project, we selected a couple of platforms that we were
going to target and we had speci�c reasons to go after those platforms.
Generally speaking, it is best to stay with the target platforms that we
selected in the beginning, although if another platform is similar, such
as Android and iOS which are both mobile platforms and as such fairly
similar, then it would be a good idea to build a release version of the game
for these platforms as well. The initial platform selection dialogue box is
pictured in Figure 11.8.

It is important to recognize that some of these build platforms have
specific requirements that we need to be aware of if we are intending to

463

Testing, Tweaking, and Publishing

TABLE 11.3 The Range of Target Platforms That Unity Can Create Release Builds For

Unity Web Player OSX Standalone Linux Standalone Windows Standalone

iOS Android BlackBerry Tizen

Windows Store Windows Phone 8 WebGL Samsung TV

Xbox One PS3 PS Vita PS4

Xbox 360

target those systems. For instance, building for OSX or iOS will require
an Apple computer to do the building on. It will also be necessary to
have a developer account with the Apple Store. Unity Web Player is
another one with unique needs. Originally, this was a wonderful method
of delivering content through a web browser to our players; however,
Google Chrome has since stopped allowing the Netscape Plugin
Application Programming Interface (NPAPI) framework that the Unity
Web Player plugin uses, a framework that other plugins use as well, which
in turn rules out a potential group of players for our games. As a result,
Unity Web Player is probably not a great choice if we want to deliver our
content via a browser, unless we are going to require our users to use a
specific browser. With Unity 5, though, we can build for WebGL, though
this is still new and there are some issues with it, but this option has an
extremely promising future.

464

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 11.8 Platform selection dialogue box within the build settings.

Note
If you are interested in creating a build with WebGL and PlayMaker, it will
be necessary to change your version of PlayMaker to the NACL version,
depending on the release versions. To perform this change, �nd the
PlayMakerNACL.unitypackage �le located within the PlayMaker���Versions
folder of the Project pane and double-click the package to import it. You
will need to con�rm any update and overwrite warnings that appear.
If you want to revert to the original version of PlayMaker, import the
PlaymakerDefault.unitypackage �le located in PlayMaker � Versions.

11.3.3 Creating a Stand-Alone Build

We will begin our sample build by opening the Build Settings dialogue
through File � Build Settings. We looked at this dialogue brie�y in the last
chapter while testing the ability to load another level from the main menu.
Be sure to add both the Main Menu scene and the Barataria scene to our
Scenes In Build section, as shown in Figure 11.9. Notice that the Main Menu
scene is at the top of the list of scenes to include and that it is numbered as 0.
Remember from our discussion of arrays that within computers numbering
begins at 0. Whichever level is at number 0 in our build list will be the level
that is loaded by default once the game launches, in our case, the Main Menu
is where we want the player to be sent to �rst.

Before we build our game, we need to take a look at the game-player
settings, which are the speci�c settings for each platform build of our
game. Each target platform can have di�erent values for these settings and
they all share the same general settings that can be utilized. The settings
that are available for the players are as follows: resolution, icon, splash
image, and other settings. In order to access the settings for the players,
we need to select the Player Settings button as shown in Figure 11.9 earlier
with the Build Settings dialogue. While the various players have these same
settings and can have di�erent values for each, Figure 11.10 shows the
settings that are shared across all of the platforms and are therefore the
same regardless of the build target selected. These properties are self-
explanatory in that they are the name of the game, name of the developer,
and icons for the game and the cursor. The only one a little di�erent is the
Cursor Hotspot, which will de�ne, in pixels, the bounding box that forms
the hotspot for the default cursor. We will go ahead and con�gure these
shared properties.

Download
Be sure to download the new assets that will be used for �nishing the
build of our game from the companion website in the folder for this
chapter: “buildAssets.zip.” Import the image �les to the UI Images folder
that we created in the last chapter.

465

Testing, Tweaking, and Publishing

 1. Change the Company Name to your name or the name of some studio
you would like to be.

 2. Change the Product Name to “Sancho Panza & The Isle of Barataria.”
 3. Change the Default Icon to either the Sancho Head or the Sancho Life

image, whichever you like.
 4. Change the Default Cursor to the cursor image �le imported to the

project from the downloaded assets.

All we have done thus far is to make some basic changes to ensure that the
proper game name is displayed, including some minor graphical changes,
such as the icon and cursor. You can now run the game within the editor to
see the new cursor in action; it was very easy to change the image for the
cursor in our game. While the cursor is working within the editor inside of
Unity, in order for it to work correctly once we build the project, we�will need

466

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 11.9 The Build Settings that we will use for our Windows Standalone build.

to make sure that the Texture Type for the Cursor image �le is set to Cursor in
the drop-down menu of the Inspector properties for that image �le. We will
move on to the resolution settings as shown in Figure 11.11. We will make the
following changes to these settings:

 1. Turn o� the check box on Default Is Native Resolution.
 2. For the Default Screen Sizes, use 1024 for the Width and 768 for the

Height.
 3. Change the Display Resolution Dialogue to Disabled.

In these steps we have turned o� the dialogue window that appeared when
we ran the game in the last chapter asking what screen resolution we would
like to run the game at. In a future version of the game, we could rearrange
our main menu to provide for an Options page in which the user could
select a resolution to run the game from within the game, however using
the default dialogue box is an approach that we have opted to bypass. Also,
we have forced the game to run at the full screen resolution that we have
speci�ed. The default setting of Native Resolution means that the game
will run at whatever resolution the player’s computer is set too, generally
speaking we can do this just �ne, however as an example we thought it
bene�cial to demonstrate how to specify the resolution that the system was
actually built for.

The next Player Setting section is for the Icon for the game. If you remember
we have already speci�ed a Default Icon for the game earlier, Sancho’s head,
however, we could provide a di�erent icon for the stand-alone version of the
game if we wanted to di�erentiate it in some way from the other platforms.
Notice that Unity has already populated the various icon sizes with versions
of our Sancho head scaled to the appropriate size, for our purposes we are
good with the settings in the Icon section.

467

Testing, Tweaking, and Publishing

FIG 11.10 The shared Player Setting properties.

Following the Icon section is the section for the Splash Image. A Splash Image
is an image that is displayed as the game is loading. With the Personal Edition
of Unity 5 that we have been using, we do not have the option to disable the
Unity Splash Screen, though if we had purchased a license we could disable
this. For us, we do not really see a reason to disable the Unity splash screen as
we have no problem with people knowing which engine we used to create
the game. The only thing we can change in this section, as shown in Figure
11.12 is the Con�g Dialog Banner image. Since we have disabled the Con�g
Dialog box in an earlier section, there is no point in worrying about this
image; however, this image would appear at the top of the Con�g Dialogue
box of you were to decide to implement an image.

While we are on the topic of splash screens, many people get frustrated
because they feel that Unity 5 will not allow them to display a custom
splash screen, for instance, a brief video of the studio name. We can create
this same e�ect by putting a di�erent scene at number 0, let’s call this new
scene Company Splash Screen, and when the game loads it will display this
“splash screen.” Within this scene add an empty Game Object and give it
a PlayMaker �nite state machine (FSM) that will pause for however long it
takes to play the company name animation and then transition to a state

468

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 11.11 The Resolution Settings page.

that will use the Load Level action to load the Main Menu scene, actually
this exercise was presented in the last chapter.

The �nal section to look at is the Other Settings area shown in Figure 11.13.
As a general rule these are performance settings and generally best left at
their default values. With that said, the Rendering Path setting determines
the quality of lighting and shadows as far as the real-time rendering system
is concerned. Forward is the default which is good for lighting though not so
great for real-time shadows. Deferred Lighting is the best for both light and
shadows; however, it will slow your game down tremendously. Vertex Lighting
is the worst for lighting with no shadows. Generally speaking, stay with
Forward unless your shadows are not working correctly or you are targeting
slower systems.

The Color Space setting determines which type of color space to use for
rendering; we are mentioning this in case you are interested in exploring
development with Oculus Rift devices as we have noted times when
switching this has impacted the quality of the graphics displayed within
the device. The default values for the other settings should work just �ne
for nearly all project builds, but full documentation on these settings
may be found in the Unity Manual at http://docs.unity3d.com/Manual/
class-PlayerSettingsStandalone.html.

Now that we have all of our Player Settings con�gured for the Standalone
build we are ready to return to the Build Settings dialogue and start the build
process. Select the Build button then browse to a folder where you want to
save the build of the project. We like to keep all of our builds within a folder
named Builds that is inside of our Project folder, though not inside of the
Assets folder which is the folder that shows up within the Project Pane of the
Unity editor. After selecting a folder give the game a name, we are going with
Sancho Beta Build click Save and wait for the build to complete. The process
of building the project will take a few minutes to complete, depending on
your computer; however, once it has �nished you will be able to browse to
the folder where the build was saved and it should be similar to Figure 11.14,
notice the icon being applied to our game’s executable �le. To distribute this
game to other people they will need to have both the executable �le and

469

Testing, Tweaking, and Publishing

FIG 11.12 The Splash Image icon settings section.

the folder that is su�xed with _Data, in our case “Sancho Beta Build_Data.”
We�are now ready to get this game in the hands of more players and testers.

11.4 Summary
Throughout this chapter we have explored what play testing is and how we
should approach it with our game projects. As a result of the play testing that
was conducted, we discovered some bugs within the project that were then
�xed by properly determining what caused the bug to occur. We were also
able to discover some aspects of the game that could be improved upon with
a couple of quick tweaks, or in some cases, with a little more work, to�make

470

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

FIG 11.13 The Other Settings section for the Player Settings.

the �nal product more playable and hopefully more fun. Finally, we looked
into all the options that are currently available for building our game projects
within Unity. This ability to develop our game in this engine and then deploy
it to multiple platforms is a very powerful and useful feature, which makes
it easier for us to port our games to other systems and expand not only
our player base but also the game’s availability. Throughout this book, we
have focused on one speci�c game project while laying the foundation for
building a completely di�erent project through our design document that we
have written. While Sancho Panza is a solid starting point, we really should
add more features to the game and create a deeper complexity of interaction
and storytelling for the player to explore; however, as an introduction to
game development the project has served our purposes admirably. We hope
that you have enjoyed this journey into game development as much as we
have and look forward to playing and seeing your amazing creations which
will be soon to come. Never stop playing, never stop learning, and never
stop�developing.

Vocabulary
Testing
Bug
Game build
Alpha

471

Testing, Tweaking, and Publishing

FIG 11.14 Folder containing the output from the build process.

Beta
Gold
Patch
DLC
Abandonware
Play-through testing
Unit testing
Break testing
WebGL
Unity Web Player
Standalone

Review Quiz
 1. What is the di�erence between the Web Player and WebGL?
 2. How are unit testing and break testing di�erent?
 3. Why do you think that play testing is viewed as “just playing the game?”
 4. Why do you think that we should have such a methodical approach to

testing?

Exercises
 1. Do some research and �nd out what would be needed to build and

publish games for:
 a. Xbox One
 b. PS4
 c. Linux
 d. Windows Phone 8
 2. Continue to test your game, especially your solutions to exercises

throughout this book and solve any bugs:
 a. Find the bugs and document what causes them.
 b. Develop a methodical procedure to troubleshooting the bugs as a

developer.
 3. Have a friend or two play your game, see if they can break it.
 4. In consultation with your play testers, what tweaks could you make to

your project to make it more playable or more fun?
 5. Do some online research and �nd out the necessary requirements to be a

game tester for a game studio.

Design Document
Our design document was completed in the last chapter. Though you may
want to take the opportunity to look back over what you have written and
make any changes based upon what we have learned throughout this book.
You should now be ready to take on your own projects; you will encounter
questions along the way, do not be afraid to ask them and do not allow them
to stop you.

472

Unity 3D and PlayMaker Essentials: Game Development from Concept to Publishing

Index

A
AAA Studios, 6–7
Abadonware, 462–463
Abstraction, 170
Achievers, Bartle player type, 5
Action–adventure games, 232

game mechanic design, 319
HUD, 392
Sancho Panza project, 317

Action games, 14–15, 227
Adaptive music vs. looping, 350–352
Adding grass, environments

billboards, 296
brush size, 299
bush free, 300
detail mesh, 296, 299–300
healthy and dry color, 297
LOD, 299
noise spread property, 296–297
Paint Details tool, 296–297
prefab object, 301
property dialogue, 296, 298
Render mode, 299
3D shrubs, 296
wind settings section, 299

Adding trees, environments
approaches, 292
brush size, 290
color variation, 292
random height setting, 290
random tree rotation, 292
unity, 289

Adding water, 288–289
Additive option, 424
Add terrain texture, 285
Advanced Spider Patrol, 180
Adventure games, 11–12
AI, see Arti�cial intelligence
Albedo, 58
Allies, 220–221
Ally, 95
Alpha game versions, 462
Ambient audio system

array con�guration for, 380–381
audio listener, 374
beating sheep sounds, 381
looping track, 353
min distance value, 372–373
potential listing of, 353

sound, cacophony of, 353
3D audio source, 371–372

American gamers, 4
Analogous colors, 400
Animations, 111, 115, 118–119, 129
Antagonist, 96
Approaching the cave, 221
Area lights, 307
Aristotle and the greeks

characters
fatal �aw, 214
intricate relationship, 215
motivations and desires, 214
tragedy, quality of, 214

diction, 215
melody, 216
plot

beginning, 212
catharsis, 213
cause-and-e�ect manner, 213
challenging task, 214
Freytag triangle, 213
Hollywood 3-Act story

structure, 212–213
knowledge discovery, 214
Lord of the Rings, 212
middle stage, 213
potential plot twists, 214
resolution, 213
tension and emotional

investment, 213
tragedy, 212
unity, concept of, 212

poetics, 211
spectacle, 216
theater and drama, 211
thought, 215
tragedy, six parts of, 211

Array, 173–174, 198–199
Array Get action, 176
Arteria3D medieval farm, 301
Arti�cial boundaries, 265
Arti�cial con�nes, 223
Arti�cial intelligence (AI), 319
Assassin’s Creed IV: Black Flag, 14
Assets package, 280–281
Async check box, 424
Attack and health states

FSM value, 194
gotHit Boolean variable, 195

Jaws_collider object, 195
Sancho’s health management,

194–195
spider collider object, 194
trick, 194

AttackRange, 171
Attack state, 197
Attenuation, 370
Audacity, 233

adjusting volume levels, 364
applying e�ects

amplify, 364
audio clipping, 363
Change Pitch e�ect, 363
gain level, 363
narration audio �le, 360
Noise Removal tool, 363
room reverb, 364

audio position, 357
default UI, 356
editing an audio �le, 357–360
sound editing tool, 356

Audio
Audacity, 356–357

adjusting volume levels, 364
applying e�ects, 360–364
cutting up an audio �le,

357–360
�nding of, 354–355
in games

ambience, 352–354
music, 350–352
sound events, 354

PlayMaker, 375–376
ambient sounds, 379–382
background music, 376–379
e�ects for events, 382–386

in Unity, 364–366
ambient audio, 371–374
background music, 375
3D audio, 369–371
2D audio, 366–369

AudioClip property, 367–368
Audio editing program, 351
Audio listener, 233, 374
Audio Play action, 378–379
Audio source, 233, 235
Audio Stop action, 378–379
Authentic Medieval Ages Audio,

364,�375

473

B
Background music

PlayMaker
audio actions, 378
Inspector variable

settings,�379
music controller state

machine, 377–378
trigger zones, 376–377

in Unity, 375
Backstory, 207

information, 232–233
revelation, 224

Balance mechanics, 316
Barataria, 269
Bartle player types, 5
Beating sheep sounds, 381; see also

Audio
array con�guration for, 380–381
events and variables, 381

Bejeweled 3, 18
Beta game versions, 462
Billboards, 296
Black box functions, 170
The Book of Unwritten Tales: The Critter

Chronicles (KING Art), 11–12
Bool variable, 243, 247
Boss battles, 231, 262
Bounce, 56
Boundaries, 307–310
Boundary conditions, 153, 176; see

also Scripted behavior
Break testing, 457
Broadleaf trees, 294
Brush fallo�, 275
Brush size, 275, 299
Bubble Pop, 18
Bug hunting

in game, 452
screenshot/video capture of, 452

Bugs, 196
Building blocks, 260
Button UI objects

available states for, 410
image objects, 409
PlayMaker, 422

C
Call of Duty, 13
Call to adventure, 219
Canvas component

deactivate, 250, 252
dialogue system, 420
main menu, 408
Rect Transform, 402–404

Capitalism Plus, 16
Capsule Game Object, 188
Casual gamer, 4–5
Catch-up mechanics, 316
Cathartic experience, 228
Central con�ict, 226–227
Change Pitch e�ect, 363
Character data, 152
Characters; see also 3D assets

Aristotle and the Greeks,
214–215

asset design, 102–104
building blocks, 206
controller, 121–122
design, 99–102
game types

information, 98–99
merchants, 97–98
quest giver, 98

requirement, 90–91
traditional character types

ally, 95
herald, 95
hero, 93
The Lord of the Rings, 92
mentor, 94–95
shadow, 93–94
shapeshifter, 96
threshold guardian, 96–97
trickster, 95–96

Chat Mapper, 230
Checkpoint system

game mechanic design
action–adventure

games,�319
positions of, 319
state machine layout, 320

mechanics, implementation of
collision system, 328
companion website, 325
GameObject variable, 328
game world, 326–327
get location state,

328–329
materials and textures, 326
respawn location variable,

329–330
rotate action, 326–327
trigger event action

settings,�328
Choose Your Own Adventure, 228
Chorus, 216
Chunks, 302–303
Civilization V, 15
Climactic con�ict, 205, 221
Collider component, 54, 460–461
Collision, 185, 187

Color space setting, 469
Color theory

analogous and complementary
color section, 400

categories of, 399
color wheel, 398–399, 401
interface systems, selection

of,�399
temperature and emotions,

400–401
UI components, 400
Unity game engine, 401

Color variation, 292
Complementary colors, 400
Complex assets, 200
Complexity, 207
Computer-controlled Sim, 159
Concept art, 102
The Controller

abstraction, 170
attackRange, 171
black box functions, 170
detection range, 171
distance, 170
events and variables, spider

controller, 168
Find Closest action, 170
�oat compare action, 171
FSM, 168
patrol, 170
PlayMaker, 168–169
Sancho, 169
targetAlive Bool variable, 171

Controller state machine, 181, 184
Controller systems, 317
Copyright law, 225, 318
Core mechanics, 204

examples of, 314–315
hide and seek, 314
Sancho Panza project, 314

Costumes, 216
Creative Commons License, 349
Creativity, 206, 238
CrossPlatformInput, 279
Cursor Hotspot, 465

D
Data structure, 173
Debug Log action, 343
Decision-making process, 152,

158–159
Deepest water point, 277–278
Descriptive design, 27–28
Design document

game audio, 36–37
game characters, 33–34

474

game concept, 30–33
game idea, 24
game interface, 37
game story, 34–35
game world, 35–36
logical design vs. descriptive

design, 27–28
methods of, 26–27
mission and vision, 28–29
requirement, 25–26
software development, 24

Design work, mechanics
checkpoint system, 319–320
respawn Sancho, 320–321
Sancho and water, 321–322
Sancho’s collection system,

323–325
Destroy Object action, 329
Detail Mesh, 296, 299–300
Dialogue

character
backstory narration, 239
basic detection system, 243
Bool variable, 243, 247
canvas, �nal version of,

245,�248
collider settings, 240, 242
custom events and

variables,�250
detection and �ring system,

240–241
Ecosystem package browser,

246, 249
elements and components,

244, 247
�nal layout, 251, 253
Find Dapple, 255
FSM, 239
functional conversation

system, 254
Game Object action, 255
Inspector variables, 250–251
PlayMaker state machine, 239
Sancho vs.Teresa, 238, 241
scale tool, 247
starter conversation, 238, 241
starting dialogue FSM, 246, 250
unity GUI system, 246
wrap and over�ow, 245, 248

story design
Chat Mapper, 230
hobo-type character, 230
Microsoft O�ce, 230
needs, 228
NPC, 228
response system, 229
trees, 229–230

system
canvas component, 420
overlay system, 420–421
PlayMaker, 418
uGUI tools, advantage of, 418

Dialogue system integration,
PlayMaker

Boolean variables, 444
Sancho, FSM of, 441, 444
Teresa, variable values for,

440–442
Dialogue trees, 229–230
Diction, Aristotle and the Greeks, 215
Diegetic UI, 394–395
Di�use map, 304–305
Digital media and video games, 318
Directional lights, 307, 309
DLC, see Downloadable content
Donkey Kong, 12, 94, 157
Don’t Destroy On Load option, 426
Doppler e�ect, 369
Downloadable content (DLC), 462
Dungeons & Dragons, 11

E
Ecosystem, 82–84
Ecosystem package browser,

246,�249
Editing, audio �le

audio exporting, 359
bleating sheep sounds, 357, 361
editor pane, 358–359
eight bleating sheep �le, 358, 360
export audio dialogue, 359, 361
warning message, 357–358

Edit terrain texture, 285
Empty game objects, 172–173, 179
Enemies, 220–221
Enemy agent, 156
Entertainment Software

Association,�4
Entertainment Software Rating

Board (ESRB) rating
system, 31, 33

Environment
boundaries, 307–310
for games

challenging the player,
264–265

controlling the player,
261–263

�nal design, 265–268
informing the player, 263–264

imported assets, 301–306
lighting, 307
for stories, 260–261

terrain dressing, standard
content

grass, 296–301
painting textures, 279–287
trees, 289–295
water, 287–289

Unity, creating the terrain
collider, 273–274
height tools, 274–279
settings, 271–273

Ergonomics, 394
Escape (ESC) key, 429
Europa Universalis IV, 15
Event audio setups

Audacity, 383–384
Audio Play action, 383
checkpoint, 382
collision-based system, 383–384

Events and variables, 340–341
Evolutionary systems

computer-controlled Sim, 159
decision-making process, 159
genetic algorithms, 160
merchant character, 161
potential evolutionary decision

process, 159–160
The Sims, 159, 161
video game character, 160

Expert systems
Donkey Kong, 157
limiting factors, 157
real-world situations, 156
speci�c state, transition to, 157
strategy games, 156

Explorers, Bartle player type, 5
External con�ict, 207–208

F
Fallo�, 274–275
Fallout, 11
Fantasy Music Collection, 364
Farmville, 4, 6
FBX �le, 104
The Fellowship of the Ring, 221
FIFA, 17
Final design, environments

arti�cial boundaries, 265
assets, list of, 267–268
Finding Dapple, 267
Hollywood 3-Act structure, 266
isle of Barataria, 265–266
level progression, 266–267
natural boundary, 265

Final tweaks, NPC
array, 198–199
attack state, 197

475

bugs, 196
FSM, 199
game object, 199
global transition event, 197
hard coding, 198
Jaws_Collider object, 196
keys, 196
moving state, 199
patrolling state, modi�ed version

of, 198
PlayMaker, global event check

box, 196, 198
play testing, 196

Find Closest action, 170, 192
Finding Dapple, 255, 267
FINISHED layout, 340–341, 343
FinishRange variable, 173
Finite state machine (FSM), 127,

141–142, 168, 194, 199
events and variables, 384–385
PlayMaker, 468
properties for, 386

Finite state machines, 239
Fixing and tweaking

Sancho Panza project, 457
sheep following, 458–460

Flexibility, 206, 238
Float, 134

compare action, 171
Divide action, 439–440

Flu�y sheep models
events and variables, 340
Waiting FSM, 339

Follow Boolean variable, 342
Football Manager, 17
Friction, 56
FSM, see Finite state machine
Functional conversation system, 254

G
Game

audio, 36–37
characters, 33–34
concept, 30–33
developer

industry, 8–10
skills and jobs, 8–9

development life cycle
deliverable, 463
stages of, 462

idea, 24
interface, 37
story, 34–35
testing

break testing, 457
characterMotor script, 458

collider component, 460–461
goal of, 452
gravity, 459
hunting bugs, 452–453
invisible platform, 460–461
play-through testing, 453–454
Rigidbody component,

458–459
unit testing, 454–457

types
action games, 14–15
adventure games, 11–12
MMO games, 18–19
platformer games, 12–13
puzzle games, 18
role-playing games, 10–11
shooter games, 13–14
simulation games, 16–17
sports games, 17
strategy games, 15–16

window, 409
world, 35–36

GameCube, 394
Game mechanics; see also Mechanics

categories of
balance, 316
core, 314–315
story, 316–317
system, 317
victory and loss conditions,

315–316
internal rules, 314

Game Object
game testing, 450, 452
sprite texture type, 406
uGUI elements, 406

Game Object action, 183, 255
Game-play components, 317
Game-play-speci�c elements, 225
Gami�cation, 4, 16
Genres, 10, 12–15, 17–18
Get Distance action, 182
Get Next waypoint state, 175, 177
Global Illumination system, 426
Global transition event, 197
Gold deliverables, 462
Goldilocks e�ect, 394
Good vs. evil, 210, 223, 226
Google Earth, 269
GotHit Boolean variable, 195
GotHit variable, 191
Graphical user interface (GUI), 236

main menu, Unity, 406
SW interface system, 394

Graphics, 216
Grass borders, 287
GrassHillAlbedo texture, 285

Guard agent, 154–155
GUI, see Graphical user interface

H
Hard-coded values, 198
Hard-core gamer, 4–5
Hardware (HW) interface system

ergonomic evolution, 394
game controllers, 394
types of, 393

HCI, see Human computer interaction
Heads-up display systems (HUD)

action–adventure game, 392
design of

aspects, 395
crafting system, 396
diegetic interface

elements,�395
GUI systems, 394–395
mock-ups, 395–396
Sancho, UI mock-ups for, 397

dialogue system integration, 441
goal of, 392
life display, 430
logic design, 431
menu design, 398
overlay vs. working

speedometer,�393
alignment properties, text

object, 416–417
color property, 414
di�erence demonstration,

414–415
game view, 413–414
hierarchy relationships, 413
mock-up, 412
prefab warning dialogue,

415–416
Quest Info system, 416–418

Height value, 272
Herald, 95
Hero, 93
The Hero with a Thousand Faces,

192,�217
Hidden barriers, 263
Himalayas, 274
Hobo-type character, 230
Hollywood 3-Act structure, 205,

218,�266
HUD systems, see Heads-up display

systems
Human computer interaction

(HCI),�393
HW interface system, see Hardware

interface system
Hybrid genre, 15, 17

476

I
Image objects, 409
Image UI object, 416, 434, 441
Imported assets

Arteria3D medieval farm, 301
chunks, 302–303
di�use map, 304–305
graphical continuity, 305
legacy shaders, 304
Mesh Collider component, 306
Mesh Renderer component, 306
modular approach, 302
normal maps, 303–305
Sancho, sizing test of, 303–304
sizing purposes, 303
standard shader, 304–305
3D modeling application, 302
town or environment, 302

Index variable, 175, 177
Indie Studio, 6–7
Indoor environments, 310
Informational character, 98
Input manager, 126, 131
Insane asylum, 155
Inspector check box, 173
Inspector panel, 54
Inspector variables, 250–251
Intellectual protection law, 225
Interactive �ction, 12
Internal con�ict, 207
Internal vs.external con�ict,

207–208
Isle of Barataria, 265–266

J
Jagged height transitions, 276
Jarring experience, 260
Jaws_Collider object, 195–196
Joseph Campbell, return of

approaching the cave, 221
call to adventure, 219
crossing the threshold, 220
meeting the mentor, 220
ordeal, 221
ordinary world, 219
refusal of the call, 219
resurrection, 222
return with Elixir, 222
reward, 221
road back, 222
tests, allies, and enemies,

220–221
Journal systems, 255
Journey of the Hero, 217–218
Jungian approach, 217

K
Killers, Bartle player type, 5
Knight, 110

L
L.A. Noir, 317
Legacy shaders, 304
The Legend of Zelda: The Wind

Waker,�219
Level of detail (LOD), 299
Level progression, 266–267
Lighting, environment, 307
Linear rollo�, 371
Load level action, 425
Logarithmic rollo�, 370–371
Logical design vs. descriptive design,

27–28
Looping music vs. adaptive, 350–352
The Lord of the Rings, 162
Loss conditions; see also Mechanics

de�nition of, 315
types of, 315–316
zero-sum game, 315

Love triangle, 208–209, 226–227

M
Madden, 17
Main menu

PlayMaker
audio �le, properties of,

424–425
click event action, 423
ESC key, 429
game launch dialogue

screen,�430
lightmap snapshot, 426–428
Play button, 426
Quit button, 427
scenes, list of, 426–427
uGUI Button, 424

Unity
Alpha change, 409
canvas scaler property, 408
highlighted color option,

407–408
Sancho object, 410
skyboxes, 406
3D perspective camera, 404
view of, 411–412

Map holes, 262
Mario Kart series, 316
Mass place trees button, 292
Mathematical behavior modeling

attack state, 158
decision process, 157

re-engage, 158–159
same time, scene and

tweaking,�159
sentry guard, 158
strict patterns, 157
traditional scripted events,

comparison of, 158–159
The Matrix, 220
Mechanics

designing of
checkpoint system, 319–320
respawn Sancho, 320–321
Sancho and water, 321–322
Sancho’s collection system,

323–325
game

balance, 316
core, 314–315
story, 316–317
system, 317
victory and loss conditions,

315–316
implementation of

checkpoint system,
325–330

respawn Sancho, 333–338
Sancho and water, 330–333
Sancho’s collection system,

338–343
origin of, 317–318

Meeting the mentor, 220
Melody, Aristotle and the

Greeks, 216
Mentor, 94–95, 220
Menu-based systems, 392
Menu design

�nal mock-ups, 398
game HUD, 398
principles of, 397

Mesh Collider component, 306
Mesh Filter part, 54
Mesh Renderer component,

172,�306
Metaphor, 215
Meta UI, 394–395
Microsoft Flight Simulator X, 16
Microsoft O�ce, 230
Mission statement, 28–29
MMO games, 18–19
Modi�ed Sancho game object,

410–411
Modi�ed update HUD, 438–439
Modular approach, 302
Mortal Kombat, 15
Moving state, 177, 199
Multiplayer game, 316
Multi-user dungeons (MUDs), 5

477

Music
controller, 386
types of, 351, 353
within video games

instrumental type of, 350
looping vs. adaptive, 350–351
vocal tracks, 350

Musical component, tragedy, 216
Music controller state machine,

377–378

N
Natural boundary, 265
Netscape Plugin Application

Programming Interface
(NPAPI), 464

Neverwinter Nights, 25
A New Hope, 260
Nintendo Entertainment System, 394
Noise Removal tool, 363
Noise spread property, 296–297
Nondiegetic UI, 394–395
Non-player characters (NPC), arti�cial

intelligence (AI), 228, 230
de�nition, 152
designing threshold guardian,

162–167
implementing threshold

guardian
attack and health states,

connecting, 194–195
attacking the player, 184–190
controller, 168–171
�nal tweaks, 196–199
hurting the player, 190–193
patrolling, 171–180
spotting the player, 180–184

prefabs, 199–200
selecting an, 161–162
types

evolutionary systems,
159–161

expert systems, 156–157
mathematical behavior

modeling, 157–159
random behavior, 154–156
scripted behavior, 152–154

Non-zero-sum game, 315
Normalized value, 436, 440
Normal maps, 303–305
NPAPI, see Netscape Plugin

Application Programming
Interface

NPC, see Non-player characters
(NPC), arti�cial
intelligence (AI)

O
Object-oriented programming, 77
Oculus Rift Virtual reality (VR)

headset, 317
One Shot Clip, 379
Opacity, 275, 281
Ordeal, 221
Ordinary world, 219; see also Joseph

Campbell, return of
Outdoor environments, 310
Overlay interface; see also Heads-up

display systems
design, 436
�lled image type, 434–435
hierarchy panel, 434–435
inserted new states, 432–433
life display, 430
lock selection, 438
logical �ow, 432
logic design, 431
modi�ed update HUD, 438–439
normalized value, 436
Sancho’s Health system, 430–431,

433–434
vs. working speedometer, 393

alignment properties, text
object, 416–417

color property, 414
di�erence demonstration,

414–415
game view, 413–414
hierarchy relationships, 413
mock-up, 412
prefab warning dialogue,

415–416
Quest Info system, 416–418

P
Pac-Man, 12, 94, 128
Pads, 110
Paint Details tool, 296–297
Paint Height, 275
Paint Tree terrain editing tool,

290–291
Palm trees, 293–294
Park Baseball, 17
Particular state machine, 175
Patch deliverables, 462
Patrolling

array, 173–174
array get action, 176
basic skeleton of, 174
boundary conditions, 176
data structure, 173
empty game objects, 172–173, 179

�nishRange variable, 173
Get Next Waypoint state, 175, 177
hierarchy panel, 179
index variable, 175, 177
Inspector check box, 173
Inspector, starting settings, 180
logical �ow, array, 177–178
Mesh Renderer component, 172
move toward action, 179
moving state, 177
particular state machine, 175
primary approaches, 171
scripted patrol mechanism,

171–172
second approach, 171
smooth look at action, 177–178
variables and single event,

173,�175
vertical check box, 178
waypoint system, 172

Patrol state, 181–182
Photoshop, 452
PhysicsMaterials, 47
Pitfalls, 273
Pivot point, meshes, 404
Place Trees tool, 289–290, 295
Platformer games, 12–13
Player, 4–5

attacking
animation, 185
capsule game object, 188
collision, 185, 187
controller state machine, 184
health system, 190
hit state, 189
next frame button, 187
random wait action, 185
Sancho, 186
spider, child objects, 186–187
transition event, 190
trigger events, 189
unity, 189–190

challenging, 264–265
controlling

boss battles, 262
character, 262
geography, 263
hidden barriers, 263
location and actions, 263
map holes, 262
natural boundaries, 263
Sancho Panza control

system, 261
hurting

Boolean variables, 191
damage variable, 190
dead state, 193

478

Find Closest action, 192
�oat compare, 193
global event, 192
gotHit variable, 191
health state machine, events

and variables, 190
living state, 192
PlayMaker, 190–191
set tag action, 192
states and transitions,

190–191
informing

color scheme, 264
environment, 263
mini-map, 264
quest-type items, 264

spotting
animation, 184
attack state, 182
controller state machine, 181
Game Object action, 183
Get Distance action, 182
patrol state, 181–182
PlayMaker editor window, 181
pursue state, 182–183
Sancho, 180
spider, 181
tweaking, 181, 184
waypoint navigation, 183

Player vs. environment (PvE), 5
Player vs. player (PvP), 5
Play head, 351
PlayMaker, 153, 168–169, 190–191

ambient sounds, 379–382
audio systems

logical structure of, 375
to play audio, 375

background music, 376–379
character control systems

input through unity, 126
response system, 123–125

dialogue system integration
Boolean variables, 444
HUD overlay, 441
Sancho, FSM of, 441, 444
Teresa, variable values for,

440–442
e�ects for events, 382–386
game testing, 450, 452
installing, 60–62
interface, 63–65
mechanics, 335–336, 342,

420–421
overlay, HUD

design, 436
�lled image type, 434–435
inserted new states, 432–433

life display, 430
lock selection, 438
logical �ow, 432
modi�ed update HUD,

438–439
Sancho’s Health system,

430–431, 433–434
response on main menu

audio �le, properties of,
424–425

click event action, 423
ESC key, 429
game launch dialogue

screen,�430
lightmap snapshot, 426–428
Play button, 426
Quit button, 427
uGUI Button, 424

spider asset, 420
UI elements, 419
using

default action browser in, 74
editor, 71–72
FINISHED state, 82
inside of, 70
Inspector pane, 71, 73
instantiating an object, 77
Set Material Color action,

75, 78
sphere Game Object, 76
state label, 81
state machine, 71
3D game, 70

PlayMakerGUI Game Object, 450–451
PlayMaker state machine, 239
Playtesting, 318
Play-through testing, 453–454
Plot

Aristotle and the Greeks,
212–214

building blocks, 209
events, 231

Point lights, 307
Position vector, 329
Prefabs, 199–200
Primary color, 399–400
Primary con�ict, 205, 207–208,

223,�260
Professional water asset, 288
Props, 216
Pursue state, 182–183
Puzzle games, 18

Q
Quest display system, 416–417, 443
Quest-type items, 264

R
Raise/Lower Terrain tool, 276
Random behavior

computer characters, 155
decision, 154
enemy agent, 156
guard agent, 154–155
insane asylum, 155
Sancho, idle animation of, 154
solo decision-making

mechanism, 155
state machine, 156
Tic-Tac-Toe game, 155
twist, scripted behavior, 155–156

Random element, 162
Random height setting, 290
Random tree height check box, 295
Random tree rotation, 292
Random wait action, 185
Real-time strategy game, 15–16
Real-world situations, 156
Rect Transform

canvas component, 402–404
main menu, 409
properties of, 402–404
uGUI, 402–403

Re-engage, 158–159
Refresh button, 295
Refusal of the call, 219
Render mode, 299, 414
Respawning Sancho

checkpoint, 333
game mechanic design

action–adventure genre, 320
state machine design, 321

mechanics, implementation
of,�333

Response system, 229
Rigidbody component, 458–459
Role-playing games, 10–11
Room reverb, 364
Rotate action, 139–140
Rudimentary skeleton, 163

S
Sancho and water

game mechanic design
advantage of, 323
collision control, 322–323
example of, 321
simpli�ed two-state version

of, 322–323
mechanics, implementation of

apply button, 336
boundary objects, 330

479

collision event properties, 331
deep ocean state actions,

331–333
gear icon, 333–334
health system, modi�ed state

machine of, 337–338
modi�ed checkpoints state

machine, 334
PlayMaker editor, 337
prefab of, 335–336

Sancho Panza control system, 261
Sancho Panza project, 256

action–adventure elements, 317
checkpoint system, 318
core mechanics, 314
�nal position of, 412
�xing and tweaking, 457
hierarchy relationships, 413
HUD, 395
mechanics design, 319
Sancho, Health bar of, 433–434
UI mock-ups for, 397

Sancho’s collection system
game mechanic design

basic approach, 323
collecting and delivering

sheep, 324
state machine for, 324
victory condition, 324

mechanics, implementation of
FINISHED layout, 340–341, 343
�u�y sheep models, 339
Follow Boolean variable, 342
sheep-collecting system, 338
Waiting FSM, 339

Sancho’s health management,
194–195, 430–431, 433–434

Sancho vs.Teresa, 238, 241
SandAlbedo, 284–285
Scenes, 59
Scripted behavior

computer opponent, 154
PlayMaker, 153
predictable nature, 154
security guard, 153
state diagram, 153
state machine, 152, 154

Scripted patrol mechanism,
171–172

Secondary color, 399–400
Self-serving, 207
Sentry guard, 158
Setting and backstory

animations, 226
asset creation, 226
character models, 226
copyright law, 225

game-play-speci�c elements, 225
intellectual protection law, 225

Setting building blocks, 206
Shadow, 93–94
Shapeshifter, 96
Sheep collection system, 340–341
Sheep plot event, 265
Shooter games, 13–14
The Sims franchise, 315
Simulation games, 16–17
Skyrim, 11
Smooth Height, 276
Smooth look at action, 177–178
Socializers, Bartle player type, 5
Software (SW) interface system, 393
Sonic the Hedgehog, 228, 315
Sound e�ect libraries, 354–355
Sound events, 354
Space property, 135
Spatial blend setting, 368
Spatial UI, 394–395
Spectacle, Aristotle and the

Greeks,�216
SpeedTree, 289
Spider collider object, 194
Splash screen, 468
Sports games, 17
Spot lights, 307
Stand-alone build, 465–467
Standard shader, 304–305
Standard trees, 290–291
Starter conversation, 238
Starting dialogue variables, 251
Star Trek:The Next Generation, 152
State machines

approach, 68
building, 68
camera follows Sancho, 145–147
complex version of, 66
concept of, 65
core component of, 66
de�ne, 65
development, 67
jumping Sancho

capability of, 140
characterMotor script

component, 142–143
FSM, 141–142
property actions, 144–145

rotating Sancho, 138–140
Sancho

Add Event textbox, 130–131
C# scripting, 127
data types, use, 135
design work, 127
editor window, 127
FINISHED event, 130

FINISHED Move Forward state,
132–133

gear selection icon, 133–134
knight object, inspector

panel, 136–137
Pac-Man, 128
play random animation

action, properties for, 129
and renamed, 128
scene—notice, 135–136

technology, 69
Stories, 260
Story

Aristotle and the Greeks
characters, 214–215
diction, 215
melody, 216
plot, 212–214
spectacle, 216
thought, 215

building blocks of
characters, 206
plot, 209
problem, 206–209
setting, 206–207
solution, 209–210
theme, 210–211

de�nition, 204
design

characters, 224
dialogue, 228–231
plot, 227
problem, 226–227
setting and backstory, 225–226
solution, 228
theme, 223–224

game, putting into the
character dialogue, 238–255
journal systems, 255
voice-over narration, 232–235
written text, 235–238

Joseph Campbell, return of
approaching the cave, 221
call to adventure, 219
crossing the threshold, 220
meeting the mentor, 220
ordeal, 221
ordinary world, 219
refusal of the call, 219
resurrection, 222
return with Elixir, 222
reward, 221
road back, 222
tests, allies, and enemies,

220–221
purpose of, 204–205
telling, 205

480

	Cover
	Half Title
	Title
	Copyright

